mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
Merge pull request #722 from karvetskiy/fix-router-caching
Fix caching for Router
This commit is contained in:
commit
9bef396d04
3 changed files with 118 additions and 98 deletions
|
@ -11,6 +11,7 @@ import litellm
|
||||||
import time
|
import time
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
|
||||||
def get_prompt(*args, **kwargs):
|
def get_prompt(*args, **kwargs):
|
||||||
# make this safe checks, it should not throw any exceptions
|
# make this safe checks, it should not throw any exceptions
|
||||||
if len(args) > 1:
|
if len(args) > 1:
|
||||||
|
@ -23,81 +24,98 @@ def get_prompt(*args, **kwargs):
|
||||||
return prompt
|
return prompt
|
||||||
return None
|
return None
|
||||||
|
|
||||||
class RedisCache():
|
|
||||||
|
class BaseCache:
|
||||||
|
def set_cache(self, key, value, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def get_cache(self, key, **kwargs):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
|
class RedisCache(BaseCache):
|
||||||
def __init__(self, host, port, password):
|
def __init__(self, host, port, password):
|
||||||
import redis
|
import redis
|
||||||
# if users don't provider one, use the default litellm cache
|
# if users don't provider one, use the default litellm cache
|
||||||
self.redis_client = redis.Redis(host=host, port=port, password=password)
|
self.redis_client = redis.Redis(host=host, port=port, password=password)
|
||||||
|
|
||||||
def set_cache(self, key, value):
|
def set_cache(self, key, value, **kwargs):
|
||||||
|
ttl = kwargs.get("ttl", None)
|
||||||
try:
|
try:
|
||||||
self.redis_client.set(key, str(value))
|
self.redis_client.set(name=key, value=str(value), ex=ttl)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
# NON blocking - notify users Redis is throwing an exception
|
# NON blocking - notify users Redis is throwing an exception
|
||||||
print("LiteLLM Caching: Got exception from REDIS: ", e)
|
print("LiteLLM Caching: Got exception from REDIS: ", e)
|
||||||
|
|
||||||
def get_cache(self, key):
|
def get_cache(self, key, **kwargs):
|
||||||
try:
|
try:
|
||||||
# TODO convert this to a ModelResponse object
|
# TODO convert this to a ModelResponse object
|
||||||
cached_response = self.redis_client.get(key)
|
cached_response = self.redis_client.get(key)
|
||||||
if cached_response!=None:
|
if cached_response != None:
|
||||||
# cached_response is in `b{} convert it to ModelResponse
|
# cached_response is in `b{} convert it to ModelResponse
|
||||||
cached_response = cached_response.decode("utf-8") # Convert bytes to string
|
cached_response = cached_response.decode("utf-8") # Convert bytes to string
|
||||||
cached_response = json.loads(cached_response) # Convert string to dictionary
|
cached_response = json.loads(cached_response) # Convert string to dictionary
|
||||||
cached_response['cache'] = True # set cache-hit flag to True
|
cached_response['cache'] = True # set cache-hit flag to True
|
||||||
return cached_response
|
return cached_response
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
# NON blocking - notify users Redis is throwing an exception
|
# NON blocking - notify users Redis is throwing an exception
|
||||||
print("LiteLLM Caching: Got exception from REDIS: ", e)
|
print("LiteLLM Caching: Got exception from REDIS: ", e)
|
||||||
|
|
||||||
class HostedCache():
|
|
||||||
def set_cache(self, key, value):
|
class HostedCache(BaseCache):
|
||||||
|
def set_cache(self, key, value, **kwargs):
|
||||||
|
if "ttl" in kwargs:
|
||||||
|
print("LiteLLM Caching: TTL is not supported for hosted cache!")
|
||||||
# make a post request to api.litellm.ai/set_cache
|
# make a post request to api.litellm.ai/set_cache
|
||||||
import requests
|
import requests
|
||||||
url = f"https://api.litellm.ai/set_cache?key={key}&value={str(value)}"
|
url = f"https://api.litellm.ai/set_cache?key={key}&value={str(value)}"
|
||||||
requests.request("POST", url) # post request to set this in the hosted litellm cache
|
requests.request("POST", url) # post request to set this in the hosted litellm cache
|
||||||
|
|
||||||
def get_cache(self, key):
|
def get_cache(self, key, **kwargs):
|
||||||
import requests
|
import requests
|
||||||
url = f"https://api.litellm.ai/get_cache?key={key}"
|
url = f"https://api.litellm.ai/get_cache?key={key}"
|
||||||
cached_response = requests.request("GET", url)
|
cached_response = requests.request("GET", url)
|
||||||
cached_response = cached_response.text
|
cached_response = cached_response.text
|
||||||
if cached_response == "NONE": # api.litellm.ai returns "NONE" if it's not a cache hit
|
if cached_response == "NONE": # api.litellm.ai returns "NONE" if it's not a cache hit
|
||||||
return None
|
return None
|
||||||
if cached_response!=None:
|
if cached_response != None:
|
||||||
try:
|
try:
|
||||||
cached_response = json.loads(cached_response) # Convert string to dictionary
|
cached_response = json.loads(cached_response) # Convert string to dictionary
|
||||||
cached_response['cache'] = True # set cache-hit flag to True
|
cached_response['cache'] = True # set cache-hit flag to True
|
||||||
return cached_response
|
return cached_response
|
||||||
except:
|
except:
|
||||||
return cached_response
|
return cached_response
|
||||||
|
|
||||||
class InMemoryCache():
|
|
||||||
|
class InMemoryCache(BaseCache):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
# if users don't provider one, use the default litellm cache
|
# if users don't provider one, use the default litellm cache
|
||||||
self.cache_dict = {}
|
self.cache_dict = {}
|
||||||
|
self.ttl_dict = {}
|
||||||
|
|
||||||
def set_cache(self, key, value):
|
def set_cache(self, key, value, **kwargs):
|
||||||
#print("in set cache for inmem")
|
|
||||||
self.cache_dict[key] = value
|
self.cache_dict[key] = value
|
||||||
#print(self.cache_dict)
|
if "ttl" in kwargs:
|
||||||
|
self.ttl_dict[key] = time.time() + kwargs["ttl"]
|
||||||
|
|
||||||
def get_cache(self, key):
|
def get_cache(self, key, **kwargs):
|
||||||
#print("in get cache for inmem")
|
|
||||||
if key in self.cache_dict:
|
if key in self.cache_dict:
|
||||||
#print("got a cache hit")
|
if key in self.ttl_dict:
|
||||||
|
if time.time() > self.ttl_dict[key]:
|
||||||
|
self.cache_dict.pop(key, None)
|
||||||
|
return None
|
||||||
return self.cache_dict[key]
|
return self.cache_dict[key]
|
||||||
#print("got a cache miss")
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
class Cache():
|
|
||||||
|
class Cache:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
type = "local",
|
type="local",
|
||||||
host = None,
|
host=None,
|
||||||
port = None,
|
port=None,
|
||||||
password = None
|
password=None
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Initializes the cache based on the given type.
|
Initializes the cache based on the given type.
|
||||||
|
|
||||||
|
@ -151,9 +169,9 @@ class Cache():
|
||||||
def generate_streaming_content(self, content):
|
def generate_streaming_content(self, content):
|
||||||
chunk_size = 5 # Adjust the chunk size as needed
|
chunk_size = 5 # Adjust the chunk size as needed
|
||||||
for i in range(0, len(content), chunk_size):
|
for i in range(0, len(content), chunk_size):
|
||||||
yield {'choices': [{'delta': {'role': 'assistant', 'content': content[i:i+chunk_size]}}]}
|
yield {'choices': [{'delta': {'role': 'assistant', 'content': content[i:i + chunk_size]}}]}
|
||||||
time.sleep(0.02)
|
time.sleep(0.02)
|
||||||
|
|
||||||
def get_cache(self, *args, **kwargs):
|
def get_cache(self, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
Retrieves the cached result for the given arguments.
|
Retrieves the cached result for the given arguments.
|
||||||
|
@ -166,16 +184,16 @@ class Cache():
|
||||||
The cached result if it exists, otherwise None.
|
The cached result if it exists, otherwise None.
|
||||||
"""
|
"""
|
||||||
try: # never block execution
|
try: # never block execution
|
||||||
if "cache_key" in kwargs:
|
if "cache_key" in kwargs:
|
||||||
cache_key = kwargs["cache_key"]
|
cache_key = kwargs["cache_key"]
|
||||||
else:
|
else:
|
||||||
cache_key = self.get_cache_key(*args, **kwargs)
|
cache_key = self.get_cache_key(*args, **kwargs)
|
||||||
if cache_key is not None:
|
if cache_key is not None:
|
||||||
cached_result = self.cache.get_cache(cache_key)
|
cached_result = self.cache.get_cache(cache_key)
|
||||||
if cached_result != None and 'stream' in kwargs and kwargs['stream'] == True:
|
if cached_result != None and 'stream' in kwargs and kwargs['stream'] == True:
|
||||||
# if streaming is true and we got a cache hit, return a generator
|
# if streaming is true and we got a cache hit, return a generator
|
||||||
#print("cache hit and stream=True")
|
# print("cache hit and stream=True")
|
||||||
#print(cached_result)
|
# print(cached_result)
|
||||||
return self.generate_streaming_content(cached_result["choices"][0]['message']['content'])
|
return self.generate_streaming_content(cached_result["choices"][0]['message']['content'])
|
||||||
return cached_result
|
return cached_result
|
||||||
except:
|
except:
|
||||||
|
@ -193,20 +211,14 @@ class Cache():
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
if "cache_key" in kwargs:
|
if "cache_key" in kwargs:
|
||||||
cache_key = kwargs["cache_key"]
|
cache_key = kwargs["cache_key"]
|
||||||
else:
|
else:
|
||||||
cache_key = self.get_cache_key(*args, **kwargs)
|
cache_key = self.get_cache_key(*args, **kwargs)
|
||||||
# print("adding to cache", cache_key, result)
|
# print("adding to cache", cache_key, result)
|
||||||
# print(cache_key)
|
# print(cache_key)
|
||||||
if cache_key is not None:
|
if cache_key is not None:
|
||||||
# print("adding to cache", cache_key, result)
|
# print("adding to cache", cache_key, result)
|
||||||
self.cache.set_cache(cache_key, result)
|
self.cache.set_cache(cache_key, result, **kwargs)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -24,6 +24,8 @@ class Router:
|
||||||
"""
|
"""
|
||||||
model_names: List = []
|
model_names: List = []
|
||||||
cache_responses: bool = False
|
cache_responses: bool = False
|
||||||
|
default_cache_time_seconds: int = 1 * 60 * 60 # 1 hour
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
model_list: Optional[list] = None,
|
model_list: Optional[list] = None,
|
||||||
redis_host: Optional[str] = None,
|
redis_host: Optional[str] = None,
|
||||||
|
@ -133,7 +135,10 @@ class Router:
|
||||||
Function LiteLLM submits a callback to after a successful
|
Function LiteLLM submits a callback to after a successful
|
||||||
completion. Purpose of this is ti update TPM/RPM usage per model
|
completion. Purpose of this is ti update TPM/RPM usage per model
|
||||||
"""
|
"""
|
||||||
model_name = kwargs.get('model', None) # i.e. azure/gpt35turbo
|
model_name = kwargs.get('model', None) # i.e. gpt35turbo
|
||||||
|
custom_llm_provider = kwargs.get("litellm_params", {}).get('custom_llm_provider', None) # i.e. azure
|
||||||
|
if custom_llm_provider:
|
||||||
|
model_name = f"{custom_llm_provider}/{model_name}"
|
||||||
total_tokens = completion_response['usage']['total_tokens']
|
total_tokens = completion_response['usage']['total_tokens']
|
||||||
self._set_deployment_usage(model_name, total_tokens)
|
self._set_deployment_usage(model_name, total_tokens)
|
||||||
|
|
||||||
|
@ -150,17 +155,9 @@ class Router:
|
||||||
if item["model_name"] == model:
|
if item["model_name"] == model:
|
||||||
potential_deployments.append(item)
|
potential_deployments.append(item)
|
||||||
|
|
||||||
# set first model as current model
|
# set first model as current model to calculate token count
|
||||||
deployment = potential_deployments[0]
|
deployment = potential_deployments[0]
|
||||||
|
|
||||||
|
|
||||||
# get model tpm, rpm limits
|
|
||||||
tpm = deployment["tpm"]
|
|
||||||
rpm = deployment["rpm"]
|
|
||||||
|
|
||||||
# get deployment current usage
|
|
||||||
current_tpm, current_rpm = self._get_deployment_usage(deployment_name=deployment["litellm_params"]["model"])
|
|
||||||
|
|
||||||
# get encoding
|
# get encoding
|
||||||
token_count = 0
|
token_count = 0
|
||||||
if messages is not None:
|
if messages is not None:
|
||||||
|
@ -172,29 +169,27 @@ class Router:
|
||||||
input_text = input
|
input_text = input
|
||||||
token_count = litellm.token_counter(model=deployment["model_name"], text=input_text)
|
token_count = litellm.token_counter(model=deployment["model_name"], text=input_text)
|
||||||
|
|
||||||
# if at model limit, return lowest used
|
# -----------------------
|
||||||
if current_tpm + token_count > tpm or current_rpm + 1 >= rpm:
|
# Find lowest used model
|
||||||
# -----------------------
|
# ----------------------
|
||||||
# Find lowest used model
|
lowest_tpm = float("inf")
|
||||||
# ----------------------
|
deployment = None
|
||||||
lowest_tpm = float('inf')
|
|
||||||
deployment = None
|
|
||||||
|
|
||||||
# Go through all the models to get tpm, rpm
|
# Go through all the models to get tpm, rpm
|
||||||
for item in potential_deployments:
|
for item in potential_deployments:
|
||||||
item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"])
|
item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"])
|
||||||
|
|
||||||
if item_tpm == 0:
|
if item_tpm == 0:
|
||||||
return item
|
return item
|
||||||
elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]:
|
elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]:
|
||||||
continue
|
continue
|
||||||
elif item_tpm < lowest_tpm:
|
elif item_tpm < lowest_tpm:
|
||||||
lowest_tpm = item_tpm
|
lowest_tpm = item_tpm
|
||||||
deployment = item
|
deployment = item
|
||||||
|
|
||||||
# if none, raise exception
|
# if none, raise exception
|
||||||
if deployment is None:
|
if deployment is None:
|
||||||
raise ValueError(f"No models available.")
|
raise ValueError("No models available.")
|
||||||
|
|
||||||
# return model
|
# return model
|
||||||
return deployment
|
return deployment
|
||||||
|
@ -213,26 +208,21 @@ class Router:
|
||||||
# ------------
|
# ------------
|
||||||
# Return usage
|
# Return usage
|
||||||
# ------------
|
# ------------
|
||||||
tpm = self.cache.get_cache(tpm_key)
|
tpm = self.cache.get_cache(cache_key=tpm_key) or 0
|
||||||
rpm = self.cache.get_cache(rpm_key)
|
rpm = self.cache.get_cache(cache_key=rpm_key) or 0
|
||||||
|
|
||||||
if tpm is None:
|
|
||||||
tpm = 0
|
|
||||||
if rpm is None:
|
|
||||||
rpm = 0
|
|
||||||
|
|
||||||
return int(tpm), int(rpm)
|
return int(tpm), int(rpm)
|
||||||
|
|
||||||
def increment(self, key: str, increment_value: int):
|
def increment(self, key: str, increment_value: int):
|
||||||
# get value
|
# get value
|
||||||
cached_value = self.cache.get_cache(key)
|
cached_value = self.cache.get_cache(cache_key=key)
|
||||||
# update value
|
# update value
|
||||||
try:
|
try:
|
||||||
cached_value = cached_value + increment_value
|
cached_value = cached_value + increment_value
|
||||||
except:
|
except:
|
||||||
cached_value = increment_value
|
cached_value = increment_value
|
||||||
# save updated value
|
# save updated value
|
||||||
self.cache.add_cache(result=cached_value, cache_key=key)
|
self.cache.add_cache(result=cached_value, cache_key=key, ttl=self.default_cache_time_seconds)
|
||||||
|
|
||||||
def _set_deployment_usage(
|
def _set_deployment_usage(
|
||||||
self,
|
self,
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import sys, os
|
import sys, os
|
||||||
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
@ -36,7 +37,7 @@ def test_gpt_cache():
|
||||||
cache_key = last_content_without_prompt_val + data["model"]
|
cache_key = last_content_without_prompt_val + data["model"]
|
||||||
print("cache_key", cache_key)
|
print("cache_key", cache_key)
|
||||||
return cache_key
|
return cache_key
|
||||||
|
|
||||||
|
|
||||||
cache.init(pre_func=pre_cache_func)
|
cache.init(pre_func=pre_cache_func)
|
||||||
cache.set_openai_key()
|
cache.set_openai_key()
|
||||||
|
@ -46,12 +47,12 @@ def test_gpt_cache():
|
||||||
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
response2 = completion(model="gpt-3.5-turbo", messages=messages)
|
||||||
response3 = completion(model="command-nightly", messages=messages)
|
response3 = completion(model="command-nightly", messages=messages)
|
||||||
|
|
||||||
if response1["choices"] != response2["choices"]: # same models should cache
|
if response1["choices"] != response2["choices"]: # same models should cache
|
||||||
print(f"response1: {response1}")
|
print(f"response1: {response1}")
|
||||||
print(f"response2: {response2}")
|
print(f"response2: {response2}")
|
||||||
pytest.fail(f"Error occurred:")
|
pytest.fail(f"Error occurred:")
|
||||||
|
|
||||||
if response3["choices"] == response2["choices"]: # different models, don't cache
|
if response3["choices"] == response2["choices"]: # different models, don't cache
|
||||||
# if models are different, it should not return cached response
|
# if models are different, it should not return cached response
|
||||||
print(f"response2: {response2}")
|
print(f"response2: {response2}")
|
||||||
print(f"response3: {response3}")
|
print(f"response3: {response3}")
|
||||||
|
@ -124,9 +125,9 @@ def test_embedding_caching():
|
||||||
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
|
embedding2 = embedding(model="text-embedding-ada-002", input=text_to_embed, caching=True)
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
||||||
|
|
||||||
litellm.cache = None
|
litellm.cache = None
|
||||||
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
||||||
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
||||||
print(f"embedding1: {embedding1}")
|
print(f"embedding1: {embedding1}")
|
||||||
print(f"embedding2: {embedding2}")
|
print(f"embedding2: {embedding2}")
|
||||||
|
@ -178,14 +179,14 @@ def test_embedding_caching_azure():
|
||||||
)
|
)
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
print(f"Embedding 2 response time: {end_time - start_time} seconds")
|
||||||
|
|
||||||
litellm.cache = None
|
litellm.cache = None
|
||||||
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
|
||||||
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
if embedding2['data'][0]['embedding'] != embedding1['data'][0]['embedding']:
|
||||||
print(f"embedding1: {embedding1}")
|
print(f"embedding1: {embedding1}")
|
||||||
print(f"embedding2: {embedding2}")
|
print(f"embedding2: {embedding2}")
|
||||||
pytest.fail("Error occurred: Embedding caching failed")
|
pytest.fail("Error occurred: Embedding caching failed")
|
||||||
|
|
||||||
os.environ['AZURE_API_VERSION'] = api_version
|
os.environ['AZURE_API_VERSION'] = api_version
|
||||||
os.environ['AZURE_API_BASE'] = api_base
|
os.environ['AZURE_API_BASE'] = api_base
|
||||||
os.environ['AZURE_API_KEY'] = api_key
|
os.environ['AZURE_API_KEY'] = api_key
|
||||||
|
@ -279,11 +280,11 @@ def test_redis_cache_completion():
|
||||||
|
|
||||||
def set_cache(key, value):
|
def set_cache(key, value):
|
||||||
local_cache[key] = value
|
local_cache[key] = value
|
||||||
|
|
||||||
def get_cache(key):
|
def get_cache(key):
|
||||||
if key in local_cache:
|
if key in local_cache:
|
||||||
return local_cache[key]
|
return local_cache[key]
|
||||||
|
|
||||||
litellm.cache.cache.set_cache = set_cache
|
litellm.cache.cache.set_cache = set_cache
|
||||||
litellm.cache.cache.get_cache = get_cache
|
litellm.cache.cache.get_cache = get_cache
|
||||||
|
|
||||||
|
@ -322,11 +323,11 @@ def test_custom_redis_cache_with_key():
|
||||||
|
|
||||||
def set_cache(key, value):
|
def set_cache(key, value):
|
||||||
local_cache[key] = value
|
local_cache[key] = value
|
||||||
|
|
||||||
def get_cache(key):
|
def get_cache(key):
|
||||||
if key in local_cache:
|
if key in local_cache:
|
||||||
return local_cache[key]
|
return local_cache[key]
|
||||||
|
|
||||||
litellm.cache.cache.set_cache = set_cache
|
litellm.cache.cache.set_cache = set_cache
|
||||||
litellm.cache.cache.get_cache = get_cache
|
litellm.cache.cache.get_cache = get_cache
|
||||||
|
|
||||||
|
@ -335,16 +336,16 @@ def test_custom_redis_cache_with_key():
|
||||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True)
|
response1 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True)
|
||||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True)
|
response2 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=True)
|
||||||
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=False)
|
response3 = completion(model="gpt-3.5-turbo", messages=messages, temperature=1, caching=False)
|
||||||
|
|
||||||
print(f"response1: {response1}")
|
print(f"response1: {response1}")
|
||||||
print(f"response2: {response2}")
|
print(f"response2: {response2}")
|
||||||
print(f"response3: {response3}")
|
print(f"response3: {response3}")
|
||||||
|
|
||||||
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
|
if response3['choices'][0]['message']['content'] == response2['choices'][0]['message']['content']:
|
||||||
pytest.fail(f"Error occurred:")
|
pytest.fail(f"Error occurred:")
|
||||||
litellm.cache = None
|
litellm.cache = None
|
||||||
|
|
||||||
test_custom_redis_cache_with_key()
|
# test_custom_redis_cache_with_key()
|
||||||
|
|
||||||
def test_hosted_cache():
|
def test_hosted_cache():
|
||||||
litellm.cache = Cache(type="hosted") # use api.litellm.ai for caching
|
litellm.cache = Cache(type="hosted") # use api.litellm.ai for caching
|
||||||
|
@ -364,3 +365,20 @@ def test_hosted_cache():
|
||||||
|
|
||||||
# test_hosted_cache()
|
# test_hosted_cache()
|
||||||
|
|
||||||
|
|
||||||
|
def test_redis_cache_with_ttl():
|
||||||
|
cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
|
||||||
|
cache.add_cache(cache_key="test_key", result="test_value", ttl=1)
|
||||||
|
cached_value = cache.get_cache(cache_key="test_key")
|
||||||
|
assert cached_value == "test_value"
|
||||||
|
time.sleep(2)
|
||||||
|
assert cache.get_cache(cache_key="test_key") is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_in_memory_cache_with_ttl():
|
||||||
|
cache = Cache(type="local")
|
||||||
|
cache.add_cache(cache_key="test_key", result="test_value", ttl=1)
|
||||||
|
cached_value = cache.get_cache(cache_key="test_key")
|
||||||
|
assert cached_value == "test_value"
|
||||||
|
time.sleep(2)
|
||||||
|
assert cache.get_cache(cache_key="test_key") is None
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue