mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
implemented RestAPI and added support for cloud and local Qdrant clusters
This commit is contained in:
parent
a047df3825
commit
9df92923d8
3 changed files with 238 additions and 129 deletions
|
@ -1219,17 +1219,19 @@ class RedisSemanticCache(BaseCache):
|
|||
|
||||
class QdrantSemanticCache(BaseCache):
|
||||
def __init__(
|
||||
self,
|
||||
qdrant_username=None,
|
||||
qdrant_password=None,
|
||||
self,
|
||||
qdrant_url=None,
|
||||
qdrant_api_key = None,
|
||||
collection_name=None,
|
||||
similarity_threshold=None,
|
||||
quantization_config=None,
|
||||
embedding_model="text-embedding-ada-002"
|
||||
embedding_model="text-embedding-ada-002",
|
||||
host_type = None
|
||||
):
|
||||
from qdrant_client import models, AsyncQdrantClient, QdrantClient
|
||||
import base64
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
_get_httpx_client,
|
||||
_get_async_httpx_client
|
||||
)
|
||||
|
||||
if collection_name is None:
|
||||
raise Exception("collection_name must be provided, passed None")
|
||||
|
@ -1244,73 +1246,109 @@ class QdrantSemanticCache(BaseCache):
|
|||
self.similarity_threshold = similarity_threshold
|
||||
self.embedding_model = embedding_model
|
||||
|
||||
if qdrant_url is None or qdrant_username is None or qdrant_password is None:
|
||||
if host_type=="cloud":
|
||||
import os
|
||||
|
||||
qdrant_url = os.getenv('QDRANT_URL')
|
||||
qdrant_username = os.getenv('QDRANT_USERNAME')
|
||||
qdrant_password = os.getenv('QDRANT PASSWORD')
|
||||
if qdrant_url is None or qdrant_username is None or qdrant_password is None:
|
||||
raise Exception("Qdrant url, username and password must be provided")
|
||||
if qdrant_url is None:
|
||||
qdrant_url = os.getenv('QDRANT_URL')
|
||||
if qdrant_api_key is None:
|
||||
qdrant_api_key = os.getenv('QDRANT_API_KEY')
|
||||
if qdrant_url is not None and qdrant_api_key is not None:
|
||||
headers = {
|
||||
"api-key": qdrant_api_key,
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
else:
|
||||
raise Exception("Qdrant url and api_key must be provided for qdrant cloud hosting")
|
||||
elif host_type=="local":
|
||||
import os
|
||||
if qdrant_url is None:
|
||||
qdrant_url = os.getenv('QDRANT_URL')
|
||||
if qdrant_url is None:
|
||||
raise Exception("Qdrant url must be provided for qdrant local hosting")
|
||||
if qdrant_api_key is None:
|
||||
qdrant_api_key = os.getenv('QDRANT_API_KEY')
|
||||
if qdrant_api_key is None:
|
||||
print_verbose('Running locally without API Key.')
|
||||
headers= {
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
else:
|
||||
print_verbose("Running locally with API Key")
|
||||
headers = {
|
||||
"api-key": qdrant_api_key,
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
else:
|
||||
raise Exception("Host type can be either 'local' or 'cloud'")
|
||||
|
||||
print_verbose(f"qdrant semantic-cache qdrant_url: {qdrant_url}")
|
||||
self.credentials = f"{qdrant_username}:{qdrant_password}"
|
||||
self.encoded_credentials = base64.b64encode(self.credentials.encode()).decode()
|
||||
self.headers = {
|
||||
"Authorization": f"Basic {self.encoded_credentials}"
|
||||
}
|
||||
|
||||
self.qdrant_client = QdrantClient(
|
||||
url= qdrant_url,
|
||||
timeout=1200,
|
||||
headers=self.headers
|
||||
)
|
||||
self.qdrant_url = qdrant_url
|
||||
self.qdrant_api_key = qdrant_api_key
|
||||
print_verbose(f"qdrant semantic-cache qdrant_url: {self.qdrant_url}")
|
||||
|
||||
self.headers = headers
|
||||
|
||||
self.sync_client = _get_httpx_client()
|
||||
self.async_client = _get_async_httpx_client()
|
||||
|
||||
self.qdrant_client_async = AsyncQdrantClient(
|
||||
url= qdrant_url,
|
||||
timeout=1200,
|
||||
headers=self.headers
|
||||
)
|
||||
if quantization_config is None:
|
||||
print('Quantization config is not provided. Default binary quantization will be used.')
|
||||
|
||||
if self.qdrant_client.collection_exists(collection_name=f"{self.collection_name}"):
|
||||
self.collection_info = self.qdrant_client.get_collection(f"{self.collection_name}")
|
||||
collection_exists = self.sync_client.get(
|
||||
url= f"{self.qdrant_url}/collections/{self.collection_name}/exists",
|
||||
headers=self.headers
|
||||
)
|
||||
if collection_exists.json()['result']['exists']:
|
||||
collection_details = self.sync_client.get(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}",
|
||||
headers=self.headers
|
||||
)
|
||||
self.collection_info = collection_details.json()
|
||||
print_verbose(f'Collection already exists.\nCollection details:{self.collection_info}')
|
||||
else:
|
||||
if quantization_config is None or quantization_config == 'binary':
|
||||
quantization_params = models.BinaryQuantization(
|
||||
binary= models.BinaryQuantizationConfig(always_ram=False),
|
||||
)
|
||||
quantization_params = {
|
||||
"binary": {
|
||||
"always_ram": False,
|
||||
}
|
||||
}
|
||||
elif quantization_config == 'scalar':
|
||||
quantization_params = models.ScalarQuantization(
|
||||
scalar=models.ScalarQuantizationConfig(
|
||||
type=models.ScalarType.INT8,
|
||||
quantile=0.99,
|
||||
always_ram=False,
|
||||
),
|
||||
)
|
||||
quantization_params = {
|
||||
"scalar": {
|
||||
"type": "int8",
|
||||
"quantile": 0.99,
|
||||
"always_ram": False
|
||||
}
|
||||
}
|
||||
elif quantization_config == 'product':
|
||||
quantization_params = models.ProductQuantization(
|
||||
product=models.ProductQuantizationConfig(
|
||||
compression=models.CompressionRatio.X16,
|
||||
always_ram=False,
|
||||
),
|
||||
)
|
||||
quantization_params = {
|
||||
"product": {
|
||||
"compression": "x16",
|
||||
"always_ram": False
|
||||
}
|
||||
}
|
||||
else:
|
||||
raise Exception("Quantization config must be one of 'scalar', 'binary' or 'product'")
|
||||
|
||||
self.qdrant_client.create_collection(
|
||||
collection_name=f"{self.collection_name}",
|
||||
vectors_config= models.VectorParams(
|
||||
size=1536,
|
||||
distance= models.Distance.COSINE
|
||||
),
|
||||
quantization_config= quantization_params
|
||||
new_collection_status = self.sync_client.put(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}",
|
||||
json={
|
||||
"vectors": {
|
||||
"size": 1536,
|
||||
"distance": "Cosine"
|
||||
},
|
||||
"quantization_config": quantization_params
|
||||
},
|
||||
headers=self.headers
|
||||
)
|
||||
|
||||
self.collection_info = self.qdrant_client.get_collection(f"{self.collection_name}")
|
||||
print_verbose(f'New collection created.\nCollection details:{self.collection_info}')
|
||||
if new_collection_status.json()["result"]:
|
||||
collection_details = self.sync_client.get(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}",
|
||||
headers=self.headers
|
||||
)
|
||||
self.collection_info = collection_details.json()
|
||||
print_verbose(f'New collection created.\nCollection details:{self.collection_info}')
|
||||
else:
|
||||
raise Exception("Error while creating new collection")
|
||||
|
||||
def _get_cache_logic(self, cached_response: Any):
|
||||
if cached_response is None:
|
||||
|
@ -1325,7 +1363,6 @@ class QdrantSemanticCache(BaseCache):
|
|||
|
||||
def set_cache(self, key, value, **kwargs):
|
||||
print_verbose(f"qdrant semantic-cache set_cache, kwargs: {kwargs}")
|
||||
from qdrant_client import models
|
||||
import uuid
|
||||
|
||||
# get the prompt
|
||||
|
@ -1347,24 +1384,27 @@ class QdrantSemanticCache(BaseCache):
|
|||
value = str(value)
|
||||
assert isinstance(value, str)
|
||||
|
||||
keys = self.qdrant_client.upsert(
|
||||
collection_name=f"{self.collection_name}",
|
||||
points=[
|
||||
models.PointStruct(
|
||||
id=str(uuid.uuid4()),
|
||||
payload={
|
||||
data = {
|
||||
"points": [
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"vector": embedding,
|
||||
"payload": {
|
||||
"text": prompt,
|
||||
"response": value,
|
||||
},
|
||||
vector= embedding,
|
||||
),
|
||||
}
|
||||
},
|
||||
]
|
||||
}
|
||||
keys = self.sync_client.put(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}/points",
|
||||
headers=self.headers,
|
||||
json=data
|
||||
)
|
||||
return
|
||||
|
||||
def get_cache(self, key, **kwargs):
|
||||
print_verbose(f"sync qdrant semantic-cache get_cache, kwargs: {kwargs}")
|
||||
from qdrant_client import models
|
||||
|
||||
# get the messages
|
||||
messages = kwargs["messages"]
|
||||
|
@ -1382,19 +1422,25 @@ class QdrantSemanticCache(BaseCache):
|
|||
# get the embedding
|
||||
embedding = embedding_response["data"][0]["embedding"]
|
||||
|
||||
results = self.qdrant_client.search(
|
||||
collection_name=self.collection_name,
|
||||
query_vector= embedding,
|
||||
search_params= models.SearchParams(
|
||||
quantization= models.QuantizationSearchParams(
|
||||
ignore=False,
|
||||
rescore=True,
|
||||
oversampling=3.0,
|
||||
),
|
||||
exact=False,
|
||||
),
|
||||
limit=1
|
||||
data = {
|
||||
"vector": embedding,
|
||||
"params": {
|
||||
"quantization": {
|
||||
"ignore": False,
|
||||
"rescore": True,
|
||||
"oversampling": 3.0,
|
||||
}
|
||||
},
|
||||
"limit":1,
|
||||
"with_payload": True
|
||||
}
|
||||
|
||||
search_response = self.sync_client.post(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}/points/search",
|
||||
headers=self.headers,
|
||||
json=data
|
||||
)
|
||||
results = search_response.json()["result"]
|
||||
|
||||
if results == None:
|
||||
return None
|
||||
|
@ -1402,8 +1448,8 @@ class QdrantSemanticCache(BaseCache):
|
|||
if len(results) == 0:
|
||||
return None
|
||||
|
||||
similarity = results[0].score
|
||||
cached_prompt = results[0].payload['text']
|
||||
similarity = results[0]["score"]
|
||||
cached_prompt = results[0]["payload"]["text"]
|
||||
|
||||
# check similarity, if more than self.similarity_threshold, return results
|
||||
print_verbose(
|
||||
|
@ -1411,7 +1457,7 @@ class QdrantSemanticCache(BaseCache):
|
|||
)
|
||||
if similarity >= self.similarity_threshold:
|
||||
# cache hit !
|
||||
cached_value = results[0].payload['response']
|
||||
cached_value = results[0]["payload"]["response"]
|
||||
print_verbose(
|
||||
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
|
||||
)
|
||||
|
@ -1423,7 +1469,6 @@ class QdrantSemanticCache(BaseCache):
|
|||
|
||||
async def async_set_cache(self, key, value, **kwargs):
|
||||
from litellm.proxy.proxy_server import llm_router, llm_model_list
|
||||
from qdrant_client import models
|
||||
import uuid
|
||||
print_verbose(f"async qdrant semantic-cache set_cache, kwargs: {kwargs}")
|
||||
|
||||
|
@ -1464,24 +1509,28 @@ class QdrantSemanticCache(BaseCache):
|
|||
value = str(value)
|
||||
assert isinstance(value, str)
|
||||
|
||||
keys = await self.qdrant_client_async.upsert(
|
||||
collection_name=f"{self.collection_name}",
|
||||
points=[
|
||||
models.PointStruct(
|
||||
id=str(uuid.uuid4()),
|
||||
payload={
|
||||
data = {
|
||||
"points": [
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"vector": embedding,
|
||||
"payload": {
|
||||
"text": prompt,
|
||||
"response": value,
|
||||
},
|
||||
vector= embedding,
|
||||
),
|
||||
}
|
||||
},
|
||||
]
|
||||
}
|
||||
|
||||
keys = await self.async_client.put(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}/points",
|
||||
headers=self.headers,
|
||||
json=data
|
||||
)
|
||||
return
|
||||
|
||||
async def async_get_cache(self, key, **kwargs):
|
||||
print_verbose(f"async qdrant semantic-cache get_cache, kwargs: {kwargs}")
|
||||
from qdrant_client import models
|
||||
from litellm.proxy.proxy_server import llm_router, llm_model_list
|
||||
|
||||
# get the messages
|
||||
|
@ -1518,20 +1567,27 @@ class QdrantSemanticCache(BaseCache):
|
|||
# get the embedding
|
||||
embedding = embedding_response["data"][0]["embedding"]
|
||||
|
||||
results = await self.qdrant_client_async.search(
|
||||
collection_name=self.collection_name,
|
||||
query_vector= embedding,
|
||||
search_params= models.SearchParams(
|
||||
quantization= models.QuantizationSearchParams(
|
||||
ignore=False,
|
||||
rescore=True,
|
||||
oversampling=3.0,
|
||||
),
|
||||
exact=False,
|
||||
),
|
||||
limit=1
|
||||
data = {
|
||||
"vector": embedding,
|
||||
"params": {
|
||||
"quantization": {
|
||||
"ignore": False,
|
||||
"rescore": True,
|
||||
"oversampling": 3.0,
|
||||
}
|
||||
},
|
||||
"limit":1,
|
||||
"with_payload": True
|
||||
}
|
||||
|
||||
search_response = await self.async_client.post(
|
||||
url=f"{self.qdrant_url}/collections/{self.collection_name}/points/search",
|
||||
headers=self.headers,
|
||||
json=data
|
||||
)
|
||||
|
||||
results = search_response.json()["result"]
|
||||
|
||||
if results == None:
|
||||
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
|
||||
return None
|
||||
|
@ -1540,8 +1596,8 @@ class QdrantSemanticCache(BaseCache):
|
|||
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
|
||||
return None
|
||||
|
||||
similarity = results[0].score
|
||||
cached_prompt = results[0].payload['text']
|
||||
similarity = results[0]["score"]
|
||||
cached_prompt = results[0]["payload"]["text"]
|
||||
|
||||
# check similarity, if more than self.similarity_threshold, return results
|
||||
print_verbose(
|
||||
|
@ -1553,7 +1609,7 @@ class QdrantSemanticCache(BaseCache):
|
|||
|
||||
if similarity >= self.similarity_threshold:
|
||||
# cache hit !
|
||||
cached_value = results[0].payload['response']
|
||||
cached_value = results[0]["payload"]["response"]
|
||||
print_verbose(
|
||||
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
|
||||
)
|
||||
|
@ -2070,12 +2126,12 @@ class Cache:
|
|||
redis_semantic_cache_embedding_model="text-embedding-ada-002",
|
||||
redis_flush_size=None,
|
||||
disk_cache_dir=None,
|
||||
qdrant_username: Optional[str] = None,
|
||||
qdrant_password: Optional[str] = None,
|
||||
qdrant_url: Optional[str] = None,
|
||||
qdrant_api_key: Optional[str] = None,
|
||||
qdrant_collection_name: Optional[str] = None,
|
||||
qdrant_quantization_config: Optional[str] = None,
|
||||
qdrant_semantic_cache_embedding_model="text-embedding-ada-002",
|
||||
qdrant_host_type: Optional[Literal["local","cloud"]] = "local",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
|
@ -2086,11 +2142,11 @@ class Cache:
|
|||
host (str, optional): The host address for the Redis cache. Required if type is "redis".
|
||||
port (int, optional): The port number for the Redis cache. Required if type is "redis".
|
||||
password (str, optional): The password for the Redis cache. Required if type is "redis".
|
||||
qdrant_url (str, optional): The url for your qdrant cluster. Required if type is "qdrant-semantic"
|
||||
qdrant_username (str, optional): The username for the qdrant cluster. Required if type is "qdrant-semantic"
|
||||
qdrant_password (str, optional): The password for the qdrant cluster. Required if type is "qdrant-semantic"
|
||||
qdrant_collection_name (str, optional): The name for your qdrant collection. Required if type is "qdrant-semantic"
|
||||
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic" or "qdrant-semantic"
|
||||
qdrant_url (str, optional): The url for your qdrant cluster. Required if type is "qdrant-semantic".
|
||||
qdrant_api_key (str, optional): The api_key for the local or cloud qdrant cluster. Required if qdrant_host_type is "cloud" and optional if qdrant_host_type is "local".
|
||||
qdrant_host_type (str, optional): Can be either "local" or "cloud". Should be "local" when you are running a local qdrant cluster or "cloud" when you are using a qdrant cloud cluster.
|
||||
qdrant_collection_name (str, optional): The name for your qdrant collection. Required if type is "qdrant-semantic".
|
||||
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic" or "qdrant-semantic".
|
||||
|
||||
supported_call_types (list, optional): List of call types to cache for. Defaults to cache == on for all call types.
|
||||
**kwargs: Additional keyword arguments for redis.Redis() cache
|
||||
|
@ -2117,13 +2173,13 @@ class Cache:
|
|||
)
|
||||
elif type == "qdrant-semantic":
|
||||
self.cache = QdrantSemanticCache(
|
||||
qdrant_username= qdrant_username,
|
||||
qdrant_password= qdrant_password,
|
||||
qdrant_url= qdrant_url,
|
||||
qdrant_api_key= qdrant_api_key,
|
||||
collection_name= qdrant_collection_name,
|
||||
similarity_threshold= similarity_threshold,
|
||||
quantization_config= qdrant_quantization_config,
|
||||
embedding_model= qdrant_semantic_cache_embedding_model,
|
||||
host_type=qdrant_host_type
|
||||
)
|
||||
elif type == "local":
|
||||
self.cache = InMemoryCache()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue