Merge pull request #5018 from haadirakhangi/main

Qdrant Semantic Caching
This commit is contained in:
Ishaan Jaff 2024-08-21 08:50:43 -07:00 committed by GitHub
commit a34aeafdb5
5 changed files with 694 additions and 6 deletions

View file

@ -1219,6 +1219,410 @@ class RedisSemanticCache(BaseCache):
async def _index_info(self):
return await self.index.ainfo()
class QdrantSemanticCache(BaseCache):
def __init__(
self,
qdrant_url=None,
qdrant_api_key = None,
collection_name=None,
similarity_threshold=None,
quantization_config=None,
embedding_model="text-embedding-ada-002",
host_type = None
):
from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
_get_async_httpx_client
)
if collection_name is None:
raise Exception("collection_name must be provided, passed None")
self.collection_name = collection_name
print_verbose(
f"qdrant semantic-cache initializing COLLECTION - {self.collection_name}"
)
if similarity_threshold is None:
raise Exception("similarity_threshold must be provided, passed None")
self.similarity_threshold = similarity_threshold
self.embedding_model = embedding_model
if host_type=="cloud":
import os
if qdrant_url is None:
qdrant_url = os.getenv('QDRANT_URL')
if qdrant_api_key is None:
qdrant_api_key = os.getenv('QDRANT_API_KEY')
if qdrant_url is not None and qdrant_api_key is not None:
headers = {
"api-key": qdrant_api_key,
"Content-Type": "application/json"
}
else:
raise Exception("Qdrant url and api_key must be provided for qdrant cloud hosting")
elif host_type=="local":
import os
if qdrant_url is None:
qdrant_url = os.getenv('QDRANT_URL')
if qdrant_url is None:
raise Exception("Qdrant url must be provided for qdrant local hosting")
if qdrant_api_key is None:
qdrant_api_key = os.getenv('QDRANT_API_KEY')
if qdrant_api_key is None:
print_verbose('Running locally without API Key.')
headers= {
"Content-Type": "application/json"
}
else:
print_verbose("Running locally with API Key")
headers = {
"api-key": qdrant_api_key,
"Content-Type": "application/json"
}
else:
raise Exception("Host type can be either 'local' or 'cloud'")
self.qdrant_url = qdrant_url
self.qdrant_api_key = qdrant_api_key
print_verbose(f"qdrant semantic-cache qdrant_url: {self.qdrant_url}")
self.headers = headers
self.sync_client = _get_httpx_client()
self.async_client = _get_async_httpx_client()
if quantization_config is None:
print('Quantization config is not provided. Default binary quantization will be used.')
collection_exists = self.sync_client.get(
url= f"{self.qdrant_url}/collections/{self.collection_name}/exists",
headers=self.headers
)
if collection_exists.json()['result']['exists']:
collection_details = self.sync_client.get(
url=f"{self.qdrant_url}/collections/{self.collection_name}",
headers=self.headers
)
self.collection_info = collection_details.json()
print_verbose(f'Collection already exists.\nCollection details:{self.collection_info}')
else:
if quantization_config is None or quantization_config == 'binary':
quantization_params = {
"binary": {
"always_ram": False,
}
}
elif quantization_config == 'scalar':
quantization_params = {
"scalar": {
"type": "int8",
"quantile": 0.99,
"always_ram": False
}
}
elif quantization_config == 'product':
quantization_params = {
"product": {
"compression": "x16",
"always_ram": False
}
}
else:
raise Exception("Quantization config must be one of 'scalar', 'binary' or 'product'")
new_collection_status = self.sync_client.put(
url=f"{self.qdrant_url}/collections/{self.collection_name}",
json={
"vectors": {
"size": 1536,
"distance": "Cosine"
},
"quantization_config": quantization_params
},
headers=self.headers
)
if new_collection_status.json()["result"]:
collection_details = self.sync_client.get(
url=f"{self.qdrant_url}/collections/{self.collection_name}",
headers=self.headers
)
self.collection_info = collection_details.json()
print_verbose(f'New collection created.\nCollection details:{self.collection_info}')
else:
raise Exception("Error while creating new collection")
def _get_cache_logic(self, cached_response: Any):
if cached_response is None:
return cached_response
try:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except:
cached_response = ast.literal_eval(cached_response)
return cached_response
def set_cache(self, key, value, **kwargs):
print_verbose(f"qdrant semantic-cache set_cache, kwargs: {kwargs}")
import uuid
# get the prompt
messages = kwargs["messages"]
prompt = ""
for message in messages:
prompt += message["content"]
# create an embedding for prompt
embedding_response = litellm.embedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
value = str(value)
assert isinstance(value, str)
data = {
"points": [
{
"id": str(uuid.uuid4()),
"vector": embedding,
"payload": {
"text": prompt,
"response": value,
}
},
]
}
keys = self.sync_client.put(
url=f"{self.qdrant_url}/collections/{self.collection_name}/points",
headers=self.headers,
json=data
)
return
def get_cache(self, key, **kwargs):
print_verbose(f"sync qdrant semantic-cache get_cache, kwargs: {kwargs}")
# get the messages
messages = kwargs["messages"]
prompt = ""
for message in messages:
prompt += message["content"]
# convert to embedding
embedding_response = litellm.embedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
data = {
"vector": embedding,
"params": {
"quantization": {
"ignore": False,
"rescore": True,
"oversampling": 3.0,
}
},
"limit":1,
"with_payload": True
}
search_response = self.sync_client.post(
url=f"{self.qdrant_url}/collections/{self.collection_name}/points/search",
headers=self.headers,
json=data
)
results = search_response.json()["result"]
if results == None:
return None
if isinstance(results, list):
if len(results) == 0:
return None
similarity = results[0]["score"]
cached_prompt = results[0]["payload"]["text"]
# check similarity, if more than self.similarity_threshold, return results
print_verbose(
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
)
if similarity >= self.similarity_threshold:
# cache hit !
cached_value = results[0]["payload"]["response"]
print_verbose(
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
)
return self._get_cache_logic(cached_response=cached_value)
else:
# cache miss !
return None
pass
async def async_set_cache(self, key, value, **kwargs):
from litellm.proxy.proxy_server import llm_router, llm_model_list
import uuid
print_verbose(f"async qdrant semantic-cache set_cache, kwargs: {kwargs}")
# get the prompt
messages = kwargs["messages"]
prompt = ""
for message in messages:
prompt += message["content"]
# create an embedding for prompt
router_model_names = (
[m["model_name"] for m in llm_model_list]
if llm_model_list is not None
else []
)
if llm_router is not None and self.embedding_model in router_model_names:
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
embedding_response = await llm_router.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
metadata={
"user_api_key": user_api_key,
"semantic-cache-embedding": True,
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
},
)
else:
# convert to embedding
embedding_response = await litellm.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
value = str(value)
assert isinstance(value, str)
data = {
"points": [
{
"id": str(uuid.uuid4()),
"vector": embedding,
"payload": {
"text": prompt,
"response": value,
}
},
]
}
keys = await self.async_client.put(
url=f"{self.qdrant_url}/collections/{self.collection_name}/points",
headers=self.headers,
json=data
)
return
async def async_get_cache(self, key, **kwargs):
print_verbose(f"async qdrant semantic-cache get_cache, kwargs: {kwargs}")
from litellm.proxy.proxy_server import llm_router, llm_model_list
# get the messages
messages = kwargs["messages"]
prompt = ""
for message in messages:
prompt += message["content"]
router_model_names = (
[m["model_name"] for m in llm_model_list]
if llm_model_list is not None
else []
)
if llm_router is not None and self.embedding_model in router_model_names:
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
embedding_response = await llm_router.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
metadata={
"user_api_key": user_api_key,
"semantic-cache-embedding": True,
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
},
)
else:
# convert to embedding
embedding_response = await litellm.aembedding(
model=self.embedding_model,
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
data = {
"vector": embedding,
"params": {
"quantization": {
"ignore": False,
"rescore": True,
"oversampling": 3.0,
}
},
"limit":1,
"with_payload": True
}
search_response = await self.async_client.post(
url=f"{self.qdrant_url}/collections/{self.collection_name}/points/search",
headers=self.headers,
json=data
)
results = search_response.json()["result"]
if results == None:
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
return None
if isinstance(results, list):
if len(results) == 0:
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
return None
similarity = results[0]["score"]
cached_prompt = results[0]["payload"]["text"]
# check similarity, if more than self.similarity_threshold, return results
print_verbose(
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
)
# update kwargs["metadata"] with similarity, don't rewrite the original metadata
kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity
if similarity >= self.similarity_threshold:
# cache hit !
cached_value = results[0]["payload"]["response"]
print_verbose(
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
)
return self._get_cache_logic(cached_response=cached_value)
else:
# cache miss !
return None
pass
async def _collection_info(self):
return self.collection_info
class S3Cache(BaseCache):
def __init__(
@ -1676,7 +2080,7 @@ class Cache:
def __init__(
self,
type: Optional[
Literal["local", "redis", "redis-semantic", "s3", "disk"]
Literal["local", "redis", "redis-semantic", "s3", "disk", "qdrant-semantic"]
] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
@ -1725,17 +2129,27 @@ class Cache:
redis_semantic_cache_embedding_model="text-embedding-ada-002",
redis_flush_size=None,
disk_cache_dir=None,
qdrant_url: Optional[str] = None,
qdrant_api_key: Optional[str] = None,
qdrant_collection_name: Optional[str] = None,
qdrant_quantization_config: Optional[str] = None,
qdrant_semantic_cache_embedding_model="text-embedding-ada-002",
qdrant_host_type: Optional[Literal["local","cloud"]] = "local",
**kwargs,
):
"""
Initializes the cache based on the given type.
Args:
type (str, optional): The type of cache to initialize. Can be "local", "redis", "redis-semantic", "s3" or "disk". Defaults to "local".
type (str, optional): The type of cache to initialize. Can be "local", "redis", "redis-semantic", "qdrant-semantic", "s3" or "disk". Defaults to "local".
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic"
qdrant_url (str, optional): The url for your qdrant cluster. Required if type is "qdrant-semantic".
qdrant_api_key (str, optional): The api_key for the local or cloud qdrant cluster. Required if qdrant_host_type is "cloud" and optional if qdrant_host_type is "local".
qdrant_host_type (str, optional): Can be either "local" or "cloud". Should be "local" when you are running a local qdrant cluster or "cloud" when you are using a qdrant cloud cluster.
qdrant_collection_name (str, optional): The name for your qdrant collection. Required if type is "qdrant-semantic".
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic" or "qdrant-semantic".
supported_call_types (list, optional): List of call types to cache for. Defaults to cache == on for all call types.
**kwargs: Additional keyword arguments for redis.Redis() cache
@ -1760,6 +2174,16 @@ class Cache:
embedding_model=redis_semantic_cache_embedding_model,
**kwargs,
)
elif type == "qdrant-semantic":
self.cache = QdrantSemanticCache(
qdrant_url= qdrant_url,
qdrant_api_key= qdrant_api_key,
collection_name= qdrant_collection_name,
similarity_threshold= similarity_threshold,
quantization_config= qdrant_quantization_config,
embedding_model= qdrant_semantic_cache_embedding_model,
host_type=qdrant_host_type
)
elif type == "local":
self.cache = InMemoryCache()
elif type == "s3":