test: cleanup testing

This commit is contained in:
Krrish Dholakia 2023-11-15 17:57:06 -08:00
parent a48445c11c
commit a3d280baa3
3 changed files with 79 additions and 83 deletions

View file

@ -265,17 +265,15 @@ class OpenAIChatCompletion(BaseLLM):
data: dict, headers: dict,
model_response: ModelResponse):
kwargs = locals()
if self._aclient_session is None:
self._aclient_session = self.create_aclient_session()
client = self._aclient_session
try:
response = await client.post(api_base, json=data, headers=headers, timeout=litellm.request_timeout)
response_json = response.json()
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
## RESPONSE OBJECT
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
async with httpx.AsyncClient() as client:
response = await client.post(api_base, json=data, headers=headers, timeout=litellm.request_timeout)
response_json = response.json()
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text, request=response.request, response=response)
## RESPONSE OBJECT
return convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
except Exception as e:
if isinstance(e, httpx.TimeoutException):
raise OpenAIError(status_code=500, message="Request Timeout Error")
@ -292,9 +290,7 @@ class OpenAIChatCompletion(BaseLLM):
model_response: ModelResponse,
model: str
):
if self._client_session is None:
self._client_session = self.create_client_session()
with self._client_session.stream(
with httpx.stream(
url=f"{api_base}", # type: ignore
json=data,
headers=headers,
@ -316,9 +312,8 @@ class OpenAIChatCompletion(BaseLLM):
headers: dict,
model_response: ModelResponse,
model: str):
if self._aclient_session is None:
self._aclient_session = self.create_aclient_session()
async with self._aclient_session.stream(
client = httpx.AsyncClient()
async with client.stream(
url=f"{api_base}",
json=data,
headers=headers,
@ -361,7 +356,7 @@ class OpenAIChatCompletion(BaseLLM):
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = self._client_session.post(
response = httpx.post(
api_base, headers=headers, json=data, timeout=litellm.request_timeout
)
## LOGGING

View file

@ -9,9 +9,8 @@ sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
from openai import Timeout
import litellm
from litellm import embedding, completion, completion_cost
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
litellm.num_retries = 3
litellm.cache = None
@ -419,7 +418,7 @@ def test_completion_openai():
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_openai()
# test_completion_openai()
def test_completion_text_openai():
try:
@ -442,11 +441,13 @@ def test_completion_openai_with_optional_params():
)
# Add any assertions here to check the response
print(response)
except Timeout as e:
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_openai_with_optional_params()
def test_completion_openai_litellm_key():
try:
litellm.api_key = os.environ['OPENAI_API_KEY']
@ -606,7 +607,7 @@ def test_completion_openai_azure_with_functions():
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_openai_azure_with_functions()
# test_completion_openai_azure_with_functions()
def test_completion_azure():

View file

@ -1,76 +1,76 @@
#### What this tests ####
# This tests if logging to the llmonitor integration actually works
# Adds the parent directory to the system path
import sys
import os
# #### What this tests ####
# # This tests if logging to the llmonitor integration actually works
# # Adds the parent directory to the system path
# import sys
# import os
sys.path.insert(0, os.path.abspath("../.."))
# sys.path.insert(0, os.path.abspath("../.."))
from litellm import completion, embedding
import litellm
# from litellm import completion, embedding
# import litellm
litellm.success_callback = ["llmonitor"]
litellm.failure_callback = ["llmonitor"]
# litellm.success_callback = ["llmonitor"]
# litellm.failure_callback = ["llmonitor"]
litellm.set_verbose = True
# litellm.set_verbose = True
def test_chat_openai():
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
user="ishaan_from_litellm"
)
# def test_chat_openai():
# try:
# response = completion(
# model="gpt-3.5-turbo",
# messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
# user="ishaan_from_litellm"
# )
print(response)
# print(response)
except Exception as e:
print(e)
# except Exception as e:
# print(e)
def test_embedding_openai():
try:
response = embedding(model="text-embedding-ada-002", input=["test"])
# Add any assertions here to check the response
print(f"response: {str(response)[:50]}")
except Exception as e:
print(e)
# def test_embedding_openai():
# try:
# response = embedding(model="text-embedding-ada-002", input=["test"])
# # Add any assertions here to check the response
# print(f"response: {str(response)[:50]}")
# except Exception as e:
# print(e)
test_chat_openai()
# test_embedding_openai()
# test_chat_openai()
# # test_embedding_openai()
def test_llmonitor_logging_function_calling():
function1 = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
try:
response = completion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "what's the weather in boston"
}],
temperature=0.1,
functions=function1,
)
print(response)
except Exception as e:
print(e)
# def test_llmonitor_logging_function_calling():
# function1 = [
# {
# "name": "get_current_weather",
# "description": "Get the current weather in a given location",
# "parameters": {
# "type": "object",
# "properties": {
# "location": {
# "type": "string",
# "description": "The city and state, e.g. San Francisco, CA",
# },
# "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
# },
# "required": ["location"],
# },
# }
# ]
# try:
# response = completion(model="gpt-3.5-turbo",
# messages=[{
# "role": "user",
# "content": "what's the weather in boston"
# }],
# temperature=0.1,
# functions=function1,
# )
# print(response)
# except Exception as e:
# print(e)
# test_llmonitor_logging_function_calling()
# # test_llmonitor_logging_function_calling()