LiteLLM Minor Fixes & Improvements (01/10/2025) - p1 (#7670)

* test(test_get_model_info.py): add unit test confirming router deployment updates global 'get_model_info'

* fix(get_supported_openai_params.py): fix custom llm provider 'get_supported_openai_params'

Fixes https://github.com/BerriAI/litellm/issues/7668

* docs(azure.md): clarify how azure ad token refresh on proxy works

Closes https://github.com/BerriAI/litellm/issues/7665
This commit is contained in:
Krish Dholakia 2025-01-10 17:49:05 -08:00 committed by GitHub
parent 8576ca8ccb
commit a3e65c9bcb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 112 additions and 5 deletions

View file

@ -587,6 +587,16 @@ response = completion(
</TabItem>
<TabItem value="proxy" label="PROXY config.yaml">
1. Add relevant env vars
```bash
export AZURE_TENANT_ID=""
export AZURE_CLIENT_ID=""
export AZURE_CLIENT_SECRET=""
```
2. Setup config.yaml
```yaml
model_list:
- model_name: gpt-3.5-turbo
@ -598,6 +608,12 @@ litellm_settings:
enable_azure_ad_token_refresh: true # 👈 KEY CHANGE
```
3. Start proxy
```bash
litellm --config /path/to/config.yaml
```
</TabItem>
</Tabs>

View file

@ -1,6 +1,7 @@
from typing import Literal, Optional
import litellm
from litellm import LlmProviders
from litellm.exceptions import BadRequestError
@ -199,5 +200,15 @@ def get_supported_openai_params( # noqa: PLR0915
model=model
)
)
elif custom_llm_provider in litellm._custom_providers:
if request_type == "chat_completion":
provider_config = litellm.ProviderConfigManager.get_provider_chat_config(
model=model, provider=LlmProviders.CUSTOM
)
return provider_config.get_supported_openai_params(model=model)
elif request_type == "embeddings":
return None
elif request_type == "transcription":
return None
return None

View file

@ -30,6 +30,7 @@ model_list:
model_info:
input_cost_per_token: 0.0000006
output_cost_per_token: 0.0000006
# litellm_settings:
# key_generation_settings:

View file

@ -1946,16 +1946,15 @@ def register_model(model_cost: Union[str, dict]): # noqa: PLR0915
for key, value in loaded_model_cost.items():
## get model info ##
try:
existing_model: Union[ModelInfo, dict] = get_model_info(model=key)
existing_model: dict = cast(dict, get_model_info(model=key))
model_cost_key = existing_model["key"]
except Exception:
existing_model = {}
model_cost_key = key
## override / add new keys to the existing model cost dictionary
litellm.model_cost.setdefault(model_cost_key, {}).update(
_update_dictionary(existing_model, value) # type: ignore
)
verbose_logger.debug(f"{key} added to model cost map")
updated_dictionary = _update_dictionary(existing_model, value)
litellm.model_cost.setdefault(model_cost_key, {}).update(updated_dictionary)
verbose_logger.debug(f"{model_cost_key} added to model cost map")
# add new model names to provider lists
if value.get("litellm_provider") == "openai":
if key not in litellm.open_ai_chat_completion_models:

View file

@ -397,3 +397,58 @@ async def test_image_generation_async_additional_params():
mock_client.call_args.kwargs["optional_params"] == {
"my_custom_param": "my-custom-param"
}
def test_get_supported_openai_params():
class MyCustomLLM(CustomLLM):
# This is what `get_supported_openai_params` should be returning:
def get_supported_openai_params(self, model: str) -> list[str]:
return [
"tools",
"tool_choice",
"temperature",
"top_p",
"top_k",
"min_p",
"typical_p",
"stop",
"seed",
"response_format",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"repeat_penalty",
"tfs_z",
"mirostat_mode",
"mirostat_tau",
"mirostat_eta",
"logit_bias",
]
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
]
resp = completion(
model="my-custom-llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
)
assert resp.choices[0].message.content == "Hi!"
# Get supported openai params
from litellm import get_supported_openai_params
response = get_supported_openai_params(model="my-custom-llm/my-fake-model")
assert response is not None

View file

@ -285,3 +285,28 @@ def test_get_model_info_custom_provider():
get_model_info(
model="my-custom-llm/my-fake-model"
) # 💥 "Exception: This model isn't mapped yet." in v1.56.10
def test_get_model_info_custom_model_router():
from litellm import Router
from litellm import get_model_info
litellm._turn_on_debug()
router = Router(
model_list=[
{
"model_name": "ma-summary",
"litellm_params": {
"api_base": "http://ma-mix-llm-serving.cicero.svc.cluster.local/v1",
"input_cost_per_token": 1,
"output_cost_per_token": 1,
"model": "openai/meta-llama/Meta-Llama-3-8B-Instruct",
"model_id": "c20d603e-1166-4e0f-aa65-ed9c476ad4ca",
},
}
]
)
info = get_model_info("openai/meta-llama/Meta-Llama-3-8B-Instruct")
print("info", info)
assert info is not None