mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
fix import loc
This commit is contained in:
parent
b965f1a306
commit
a40ecc3fe4
380 changed files with 1491 additions and 1208 deletions
|
@ -0,0 +1,488 @@
|
|||
######################################################################
|
||||
|
||||
# /v1/batches Endpoints
|
||||
|
||||
|
||||
######################################################################
|
||||
import asyncio
|
||||
from typing import Dict, Optional, cast
|
||||
|
||||
from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.batches.main import (
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from litellm_proxy_extras.litellm_proxy._types import *
|
||||
from litellm_proxy_extras.litellm_proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
from litellm_proxy_extras.litellm_proxy.common_request_processing import ProxyBaseLLMRequestProcessing
|
||||
from litellm_proxy_extras.litellm_proxy.common_utils.http_parsing_utils import _read_request_body
|
||||
from litellm_proxy_extras.litellm_proxy.common_utils.openai_endpoint_utils import (
|
||||
get_custom_llm_provider_from_request_body,
|
||||
)
|
||||
from litellm_proxy_extras.litellm_proxy.openai_files_endpoints.files_endpoints import is_known_model
|
||||
from litellm_proxy_extras.litellm_proxy.utils import handle_exception_on_proxy
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post(
|
||||
"/{provider}/v1/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/v1/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def create_batch(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
provider: Optional[str] = None,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Create large batches of API requests for asynchronous processing.
|
||||
This is the equivalent of POST https://api.openai.com/v1/batch
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"input_file_id": "file-abc123",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"completion_window": "24h"
|
||||
}'
|
||||
```
|
||||
"""
|
||||
from litellm_proxy_extras.litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
llm_router,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: Dict = {}
|
||||
try:
|
||||
data = await _read_request_body(request=request)
|
||||
verbose_proxy_logger.debug(
|
||||
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
|
||||
)
|
||||
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
## check if model is a loadbalanced model
|
||||
router_model: Optional[str] = None
|
||||
is_router_model = False
|
||||
if litellm.enable_loadbalancing_on_batch_endpoints is True:
|
||||
router_model = data.get("model", None)
|
||||
is_router_model = is_known_model(model=router_model, llm_router=llm_router)
|
||||
|
||||
custom_llm_provider = (
|
||||
provider or data.pop("custom_llm_provider", None) or "openai"
|
||||
)
|
||||
_create_batch_data = CreateBatchRequest(**data)
|
||||
if (
|
||||
litellm.enable_loadbalancing_on_batch_endpoints is True
|
||||
and is_router_model
|
||||
and router_model is not None
|
||||
):
|
||||
if llm_router is None:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail={
|
||||
"error": "LLM Router not initialized. Ensure models added to proxy."
|
||||
},
|
||||
)
|
||||
|
||||
response = await llm_router.acreate_batch(**_create_batch_data) # type: ignore
|
||||
else:
|
||||
response = await litellm.acreate_batch(
|
||||
custom_llm_provider=custom_llm_provider, **_create_batch_data # type: ignore
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
request_data=data,
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.exception(
|
||||
"litellm_proxy.proxy_server.create_batch(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/{provider}/v1/batches/{batch_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/v1/batches/{batch_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/batches/{batch_id:path}",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def retrieve_batch(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
provider: Optional[str] = None,
|
||||
batch_id: str = Path(
|
||||
title="Batch ID to retrieve", description="The ID of the batch to retrieve"
|
||||
),
|
||||
):
|
||||
"""
|
||||
Retrieves a batch.
|
||||
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id}
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches/batch_abc123 \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
|
||||
```
|
||||
"""
|
||||
from litellm_proxy_extras.litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
llm_router,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: Dict = {}
|
||||
try:
|
||||
## check if model is a loadbalanced model
|
||||
_retrieve_batch_request = RetrieveBatchRequest(
|
||||
batch_id=batch_id,
|
||||
)
|
||||
|
||||
data = cast(dict, _retrieve_batch_request)
|
||||
|
||||
# setup logging
|
||||
data["litellm_call_id"] = request.headers.get(
|
||||
"x-litellm-call-id", str(uuid.uuid4())
|
||||
)
|
||||
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
if litellm.enable_loadbalancing_on_batch_endpoints is True:
|
||||
if llm_router is None:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail={
|
||||
"error": "LLM Router not initialized. Ensure models added to proxy."
|
||||
},
|
||||
)
|
||||
|
||||
response = await llm_router.aretrieve_batch(**data) # type: ignore
|
||||
else:
|
||||
custom_llm_provider = (
|
||||
provider
|
||||
or await get_custom_llm_provider_from_request_body(request=request)
|
||||
or "openai"
|
||||
)
|
||||
response = await litellm.aretrieve_batch(
|
||||
custom_llm_provider=custom_llm_provider, **data # type: ignore
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
request_data=data,
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.exception(
|
||||
"litellm_proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/{provider}/v1/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/v1/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.get(
|
||||
"/batches",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def list_batches(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
provider: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
after: Optional[str] = None,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Lists
|
||||
This is the equivalent of GET https://api.openai.com/v1/batches/
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches?limit=2 \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
|
||||
```
|
||||
"""
|
||||
from litellm_proxy_extras.litellm_proxy.proxy_server import proxy_logging_obj, version
|
||||
|
||||
verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit))
|
||||
try:
|
||||
custom_llm_provider = (
|
||||
provider
|
||||
or await get_custom_llm_provider_from_request_body(request=request)
|
||||
or "openai"
|
||||
)
|
||||
response = await litellm.alist_batches(
|
||||
custom_llm_provider=custom_llm_provider, # type: ignore
|
||||
after=after,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
original_exception=e,
|
||||
request_data={"after": after, "limit": limit},
|
||||
)
|
||||
verbose_proxy_logger.error(
|
||||
"litellm_proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/{provider}/v1/batches/{batch_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/v1/batches/{batch_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/batches/{batch_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def cancel_batch(
|
||||
request: Request,
|
||||
batch_id: str,
|
||||
fastapi_response: Response,
|
||||
provider: Optional[str] = None,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Cancel a batch.
|
||||
This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
|
||||
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches/batch_abc123/cancel \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-X POST
|
||||
|
||||
```
|
||||
"""
|
||||
from litellm_proxy_extras.litellm_proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: Dict = {}
|
||||
try:
|
||||
data = await _read_request_body(request=request)
|
||||
verbose_proxy_logger.debug(
|
||||
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
|
||||
)
|
||||
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
custom_llm_provider = (
|
||||
provider or data.pop("custom_llm_provider", None) or "openai"
|
||||
)
|
||||
_cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data)
|
||||
response = await litellm.acancel_batch(
|
||||
custom_llm_provider=custom_llm_provider, # type: ignore
|
||||
**_cancel_batch_data
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
request_data=data,
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.exception(
|
||||
"litellm_proxy.proxy_server.create_batch(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
# END OF /v1/batches Endpoints Implementation
|
||||
|
||||
######################################################################
|
Loading…
Add table
Add a link
Reference in a new issue