clean up hugging face completion()

This commit is contained in:
ishaan-jaff 2023-09-04 14:41:06 -07:00
parent f0e2922710
commit a474b89779
3 changed files with 129 additions and 123 deletions

View file

@ -1,5 +1,6 @@
## Uses the huggingface text generation inference API
import os, json
import os
import json
from enum import Enum
import requests
import time
@ -7,7 +8,6 @@ from typing import Callable
from litellm.utils import ModelResponse
from typing import Optional
class HuggingfaceError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
@ -16,127 +16,129 @@ class HuggingfaceError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
headers = {
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
class HuggingfaceRestAPILLM:
def __init__(self, encoding, logging_obj, api_key=None) -> None:
self.encoding = encoding
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
self.headers = {
"content-type": "application/json",
}
# get the api key if it exists in the environment or is passed in, but don't require it
self.api_key = api_key
if self.api_key != None:
self.headers["Authorization"] = f"Bearer {self.api_key}"
def completion(
self,
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
completion_url: str = ""
if "https" in model:
completion_url = model
elif api_base:
completion_url = api_base
elif "HF_API_BASE" in os.environ:
completion_url = os.getenv("HF_API_BASE", "")
else:
completion_url = f"https://api-inference.huggingface.co/models/{model}"
prompt = ""
if (
"meta-llama" in model and "chat" in model
): # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
prompt = "<s>"
for message in messages:
if message["role"] == "system":
prompt += "[INST] <<SYS>>" + message["content"]
elif message["role"] == "assistant":
prompt += message["content"] + "</s><s>[INST]"
elif message["role"] == "user":
prompt += message["content"] + "[/INST]"
else:
for message in messages:
prompt += f"{message['content']}"
### MAP INPUT PARAMS
data = {"inputs": prompt, "parameters": optional_params, "stream": True if "stream" in optional_params and optional_params["stream"] == True else False}
## LOGGING
self.logging_obj.pre_call(
def completion(
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
completion_url = ""
if "https" in model:
completion_url = model
elif api_base:
completion_url = api_base
elif "HF_API_BASE" in os.environ:
completion_url = os.getenv("HF_API_BASE", "")
else:
completion_url = f"https://api-inference.huggingface.co/models/{model}"
prompt = ""
if (
"meta-llama" in model and "chat" in model
): # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
prompt = "<s>"
for message in messages:
if message["role"] == "system":
prompt += "[INST] <<SYS>>" + message["content"]
elif message["role"] == "assistant":
prompt += message["content"] + "</s><s>[INST]"
elif message["role"] == "user":
prompt += message["content"] + "[/INST]"
else:
for message in messages:
prompt += f"{message['content']}"
### MAP INPUT PARAMS
data = {
"inputs": prompt,
"parameters": optional_params,
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"]
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post(
completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"]
)
return response.iter_lines()
else:
response = requests.post(
completion_url,
headers=headers,
data=json.dumps(data)
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise HuggingfaceError(
message=response.text, status_code=response.status_code
)
print_verbose(f"response: {completion_response}")
if isinstance(completion_response, dict) and "error" in completion_response:
print_verbose(f"completion error: {completion_response['error']}")
print_verbose(f"response.status_code: {response.status_code}")
raise HuggingfaceError(
message=completion_response["error"],
status_code=response.status_code,
)
return response.iter_lines()
else:
response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data)
)
## LOGGING
self.logging_obj.post_call(
input=prompt,
api_key=self.api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise HuggingfaceError(message=response.text, status_code=response.status_code)
print_verbose(f"response: {completion_response}")
if isinstance(completion_response, dict) and "error" in completion_response:
print_verbose(f"completion error: {completion_response['error']}")
print_verbose(f"response.status_code: {response.status_code}")
raise HuggingfaceError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
model_response["choices"][0]["message"][
"content"
] = completion_response[0]["generated_text"]
## GETTING LOGPROBS
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
sum_logprob = 0
for token in completion_response[0]["details"]["tokens"]:
sum_logprob += token["logprob"]
model_response["choices"][0]["message"]["logprobs"] = sum_logprob
## CALCULATING USAGE
prompt_tokens = len(
self.encoding.encode(prompt)
) ##[TODO] use the llama2 tokenizer here
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the llama2 tokenizer here
model_response["choices"][0]["message"][
"content"
] = completion_response[0]["generated_text"]
## GETTING LOGPROBS
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
sum_logprob = 0
for token in completion_response[0]["details"]["tokens"]:
sum_logprob += token["logprob"]
model_response["choices"][0]["message"]["logprobs"] = sum_logprob
## CALCULATING USAGE
prompt_tokens = len(
encoding.encode(prompt)
) ##[TODO] use the llama2 tokenizer here
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the llama2 tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
pass
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
pass
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass