clean up hugging face completion()

This commit is contained in:
ishaan-jaff 2023-09-04 14:41:06 -07:00
parent f0e2922710
commit a474b89779
3 changed files with 129 additions and 123 deletions

View file

@ -1,5 +1,6 @@
## Uses the huggingface text generation inference API ## Uses the huggingface text generation inference API
import os, json import os
import json
from enum import Enum from enum import Enum
import requests import requests
import time import time
@ -7,7 +8,6 @@ from typing import Callable
from litellm.utils import ModelResponse from litellm.utils import ModelResponse
from typing import Optional from typing import Optional
class HuggingfaceError(Exception): class HuggingfaceError(Exception):
def __init__(self, status_code, message): def __init__(self, status_code, message):
self.status_code = status_code self.status_code = status_code
@ -16,36 +16,29 @@ class HuggingfaceError(Exception):
self.message self.message
) # Call the base class constructor with the parameters it needs ) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
class HuggingfaceRestAPILLM: headers = {
def __init__(self, encoding, logging_obj, api_key=None) -> None:
self.encoding = encoding
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
self.headers = {
"content-type": "application/json", "content-type": "application/json",
} }
# get the api key if it exists in the environment or is passed in, but don't require it if api_key:
self.api_key = api_key headers["Authorization"] = f"Bearer {api_key}"
if self.api_key != None: return headers
self.headers["Authorization"] = f"Bearer {self.api_key}"
def completion( def completion(
self,
model: str, model: str,
messages: list, messages: list,
api_base: str, api_base: str,
model_response: ModelResponse, model_response: ModelResponse,
print_verbose: Callable, print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None, optional_params=None,
litellm_params=None, litellm_params=None,
logger_fn=None, logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls ):
completion_url: str = "" headers = validate_environment(api_key)
completion_url = ""
if "https" in model: if "https" in model:
completion_url = model completion_url = model
elif api_base: elif api_base:
@ -70,27 +63,36 @@ class HuggingfaceRestAPILLM:
for message in messages: for message in messages:
prompt += f"{message['content']}" prompt += f"{message['content']}"
### MAP INPUT PARAMS ### MAP INPUT PARAMS
data = {"inputs": prompt, "parameters": optional_params, "stream": True if "stream" in optional_params and optional_params["stream"] == True else False} data = {
"inputs": prompt,
"parameters": optional_params,
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
}
## LOGGING ## LOGGING
self.logging_obj.pre_call( logging_obj.pre_call(
input=prompt, input=prompt,
api_key=self.api_key, api_key=api_key,
additional_args={"complete_input_dict": data}, additional_args={"complete_input_dict": data},
) )
## COMPLETION CALL ## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post( response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"]
) )
return response.iter_lines() return response.iter_lines()
else: else:
response = requests.post( response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data) completion_url,
headers=headers,
data=json.dumps(data)
) )
## LOGGING ## LOGGING
self.logging_obj.post_call( logging_obj.post_call(
input=prompt, input=prompt,
api_key=self.api_key, api_key=api_key,
original_response=response.text, original_response=response.text,
additional_args={"complete_input_dict": data}, additional_args={"complete_input_dict": data},
) )
@ -98,7 +100,9 @@ class HuggingfaceRestAPILLM:
try: try:
completion_response = response.json() completion_response = response.json()
except: except:
raise HuggingfaceError(message=response.text, status_code=response.status_code) raise HuggingfaceError(
message=response.text, status_code=response.status_code
)
print_verbose(f"response: {completion_response}") print_verbose(f"response: {completion_response}")
if isinstance(completion_response, dict) and "error" in completion_response: if isinstance(completion_response, dict) and "error" in completion_response:
print_verbose(f"completion error: {completion_response['error']}") print_verbose(f"completion error: {completion_response['error']}")
@ -120,10 +124,10 @@ class HuggingfaceRestAPILLM:
model_response["choices"][0]["message"]["logprobs"] = sum_logprob model_response["choices"][0]["message"]["logprobs"] = sum_logprob
## CALCULATING USAGE ## CALCULATING USAGE
prompt_tokens = len( prompt_tokens = len(
self.encoding.encode(prompt) encoding.encode(prompt)
) ##[TODO] use the llama2 tokenizer here ) ##[TODO] use the llama2 tokenizer here
completion_tokens = len( completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"]) encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the llama2 tokenizer here ) ##[TODO] use the llama2 tokenizer here
model_response["created"] = time.time() model_response["created"] = time.time()
@ -134,9 +138,7 @@ class HuggingfaceRestAPILLM:
"total_tokens": prompt_tokens + completion_tokens, "total_tokens": prompt_tokens + completion_tokens,
} }
return model_response return model_response
pass
def embedding( def embedding():
self, # logic for parsing in - calling - parsing out model embedding calls
): # logic for parsing in - calling - parsing out model embedding calls
pass pass

View file

@ -24,7 +24,7 @@ from .llms import together_ai
from .llms import ai21 from .llms import ai21
from .llms import sagemaker from .llms import sagemaker
from .llms import bedrock from .llms import bedrock
from .llms.huggingface_restapi import HuggingfaceRestAPILLM from .llms import huggingface_restapi
from .llms.baseten import BasetenLLM from .llms.baseten import BasetenLLM
from .llms.aleph_alpha import AlephAlphaLLM from .llms.aleph_alpha import AlephAlphaLLM
import tiktoken import tiktoken
@ -552,10 +552,7 @@ def completion(
or os.environ.get("HF_TOKEN") or os.environ.get("HF_TOKEN")
or os.environ.get("HUGGINGFACE_API_KEY") or os.environ.get("HUGGINGFACE_API_KEY")
) )
huggingface_client = HuggingfaceRestAPILLM( model_response = huggingface_restapi.completion(
encoding=encoding, api_key=huggingface_key, logging_obj=logging
)
model_response = huggingface_client.completion(
model=model, model=model,
messages=messages, messages=messages,
api_base=api_base, api_base=api_base,
@ -564,6 +561,10 @@ def completion(
optional_params=optional_params, optional_params=optional_params,
litellm_params=litellm_params, litellm_params=litellm_params,
logger_fn=logger_fn, logger_fn=logger_fn,
encoding=encoding,
api_key=huggingface_key,
logging_obj=logging
) )
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object, # don't try to access stream object,

View file

@ -123,7 +123,10 @@ def test_completion_claude_stream():
# # Add any assertions here to check the response # # Add any assertions here to check the response
# print(response) # print(response)
# except Exception as e: # except Exception as e:
# if "loading" in str(e):
# pass
# pytest.fail(f"Error occurred: {e}") # pytest.fail(f"Error occurred: {e}")
# # test_completion_hf_api()
# def test_completion_hf_deployed_api(): # def test_completion_hf_deployed_api():