clean up hugging face completion()

This commit is contained in:
ishaan-jaff 2023-09-04 14:41:06 -07:00
parent f0e2922710
commit a474b89779
3 changed files with 129 additions and 123 deletions

View file

@ -1,5 +1,6 @@
## Uses the huggingface text generation inference API ## Uses the huggingface text generation inference API
import os, json import os
import json
from enum import Enum from enum import Enum
import requests import requests
import time import time
@ -7,7 +8,6 @@ from typing import Callable
from litellm.utils import ModelResponse from litellm.utils import ModelResponse
from typing import Optional from typing import Optional
class HuggingfaceError(Exception): class HuggingfaceError(Exception):
def __init__(self, status_code, message): def __init__(self, status_code, message):
self.status_code = status_code self.status_code = status_code
@ -16,127 +16,129 @@ class HuggingfaceError(Exception):
self.message self.message
) # Call the base class constructor with the parameters it needs ) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
headers = {
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
class HuggingfaceRestAPILLM: def completion(
def __init__(self, encoding, logging_obj, api_key=None) -> None: model: str,
self.encoding = encoding messages: list,
self.logging_obj = logging_obj api_base: str,
self.validate_environment(api_key=api_key) model_response: ModelResponse,
print_verbose: Callable,
def validate_environment( encoding,
self, api_key api_key,
): # set up the environment required to run the model logging_obj,
self.headers = { optional_params=None,
"content-type": "application/json", litellm_params=None,
} logger_fn=None,
# get the api key if it exists in the environment or is passed in, but don't require it ):
self.api_key = api_key headers = validate_environment(api_key)
if self.api_key != None: completion_url = ""
self.headers["Authorization"] = f"Bearer {self.api_key}" if "https" in model:
completion_url = model
def completion( elif api_base:
self, completion_url = api_base
model: str, elif "HF_API_BASE" in os.environ:
messages: list, completion_url = os.getenv("HF_API_BASE", "")
api_base: str, else:
model_response: ModelResponse, completion_url = f"https://api-inference.huggingface.co/models/{model}"
print_verbose: Callable, prompt = ""
optional_params=None, if (
litellm_params=None, "meta-llama" in model and "chat" in model
logger_fn=None, ): # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2
): # logic for parsing in - calling - parsing out model completion calls prompt = "<s>"
completion_url: str = "" for message in messages:
if "https" in model: if message["role"] == "system":
completion_url = model prompt += "[INST] <<SYS>>" + message["content"]
elif api_base: elif message["role"] == "assistant":
completion_url = api_base prompt += message["content"] + "</s><s>[INST]"
elif "HF_API_BASE" in os.environ: elif message["role"] == "user":
completion_url = os.getenv("HF_API_BASE", "") prompt += message["content"] + "[/INST]"
else: else:
completion_url = f"https://api-inference.huggingface.co/models/{model}" for message in messages:
prompt = "" prompt += f"{message['content']}"
if ( ### MAP INPUT PARAMS
"meta-llama" in model and "chat" in model data = {
): # use the required special tokens for meta-llama - https://huggingface.co/blog/llama2#how-to-prompt-llama-2 "inputs": prompt,
prompt = "<s>" "parameters": optional_params,
for message in messages: "stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
if message["role"] == "system": }
prompt += "[INST] <<SYS>>" + message["content"] ## LOGGING
elif message["role"] == "assistant": logging_obj.pre_call(
prompt += message["content"] + "</s><s>[INST]"
elif message["role"] == "user":
prompt += message["content"] + "[/INST]"
else:
for message in messages:
prompt += f"{message['content']}"
### MAP INPUT PARAMS
data = {"inputs": prompt, "parameters": optional_params, "stream": True if "stream" in optional_params and optional_params["stream"] == True else False}
## LOGGING
self.logging_obj.pre_call(
input=prompt, input=prompt,
api_key=self.api_key, api_key=api_key,
additional_args={"complete_input_dict": data}, additional_args={"complete_input_dict": data},
) )
## COMPLETION CALL ## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post( response = requests.post(
completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] completion_url,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"]
)
return response.iter_lines()
else:
response = requests.post(
completion_url,
headers=headers,
data=json.dumps(data)
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise HuggingfaceError(
message=response.text, status_code=response.status_code
)
print_verbose(f"response: {completion_response}")
if isinstance(completion_response, dict) and "error" in completion_response:
print_verbose(f"completion error: {completion_response['error']}")
print_verbose(f"response.status_code: {response.status_code}")
raise HuggingfaceError(
message=completion_response["error"],
status_code=response.status_code,
) )
return response.iter_lines()
else: else:
response = requests.post( model_response["choices"][0]["message"][
completion_url, headers=self.headers, data=json.dumps(data) "content"
) ] = completion_response[0]["generated_text"]
## LOGGING
self.logging_obj.post_call( ## GETTING LOGPROBS
input=prompt, if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
api_key=self.api_key, sum_logprob = 0
original_response=response.text, for token in completion_response[0]["details"]["tokens"]:
additional_args={"complete_input_dict": data}, sum_logprob += token["logprob"]
) model_response["choices"][0]["message"]["logprobs"] = sum_logprob
## RESPONSE OBJECT ## CALCULATING USAGE
try: prompt_tokens = len(
completion_response = response.json() encoding.encode(prompt)
except: ) ##[TODO] use the llama2 tokenizer here
raise HuggingfaceError(message=response.text, status_code=response.status_code) completion_tokens = len(
print_verbose(f"response: {completion_response}") encoding.encode(model_response["choices"][0]["message"]["content"])
if isinstance(completion_response, dict) and "error" in completion_response: ) ##[TODO] use the llama2 tokenizer here
print_verbose(f"completion error: {completion_response['error']}")
print_verbose(f"response.status_code: {response.status_code}")
raise HuggingfaceError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
model_response["choices"][0]["message"][
"content"
] = completion_response[0]["generated_text"]
## GETTING LOGPROBS
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
sum_logprob = 0
for token in completion_response[0]["details"]["tokens"]:
sum_logprob += token["logprob"]
model_response["choices"][0]["message"]["logprobs"] = sum_logprob
## CALCULATING USAGE
prompt_tokens = len(
self.encoding.encode(prompt)
) ##[TODO] use the llama2 tokenizer here
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the llama2 tokenizer here
model_response["created"] = time.time() model_response["created"] = time.time()
model_response["model"] = model model_response["model"] = model
model_response["usage"] = { model_response["usage"] = {
"prompt_tokens": prompt_tokens, "prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens, "completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens, "total_tokens": prompt_tokens + completion_tokens,
} }
return model_response return model_response
pass
def embedding( def embedding():
self, # logic for parsing in - calling - parsing out model embedding calls
): # logic for parsing in - calling - parsing out model embedding calls pass
pass

View file

@ -24,7 +24,7 @@ from .llms import together_ai
from .llms import ai21 from .llms import ai21
from .llms import sagemaker from .llms import sagemaker
from .llms import bedrock from .llms import bedrock
from .llms.huggingface_restapi import HuggingfaceRestAPILLM from .llms import huggingface_restapi
from .llms.baseten import BasetenLLM from .llms.baseten import BasetenLLM
from .llms.aleph_alpha import AlephAlphaLLM from .llms.aleph_alpha import AlephAlphaLLM
import tiktoken import tiktoken
@ -552,10 +552,7 @@ def completion(
or os.environ.get("HF_TOKEN") or os.environ.get("HF_TOKEN")
or os.environ.get("HUGGINGFACE_API_KEY") or os.environ.get("HUGGINGFACE_API_KEY")
) )
huggingface_client = HuggingfaceRestAPILLM( model_response = huggingface_restapi.completion(
encoding=encoding, api_key=huggingface_key, logging_obj=logging
)
model_response = huggingface_client.completion(
model=model, model=model,
messages=messages, messages=messages,
api_base=api_base, api_base=api_base,
@ -564,6 +561,10 @@ def completion(
optional_params=optional_params, optional_params=optional_params,
litellm_params=litellm_params, litellm_params=litellm_params,
logger_fn=logger_fn, logger_fn=logger_fn,
encoding=encoding,
api_key=huggingface_key,
logging_obj=logging
) )
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object, # don't try to access stream object,

View file

@ -123,7 +123,10 @@ def test_completion_claude_stream():
# # Add any assertions here to check the response # # Add any assertions here to check the response
# print(response) # print(response)
# except Exception as e: # except Exception as e:
# if "loading" in str(e):
# pass
# pytest.fail(f"Error occurred: {e}") # pytest.fail(f"Error occurred: {e}")
# # test_completion_hf_api()
# def test_completion_hf_deployed_api(): # def test_completion_hf_deployed_api():