mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
Merge pull request #2879 from BerriAI/litellm_async_anthropic_api
[Feat] Async Anthropic API 97.5% lower median latency
This commit is contained in:
commit
a5aef6ec00
6 changed files with 339 additions and 150 deletions
|
@ -7,7 +7,8 @@ from typing import Callable, Optional, List
|
|||
from litellm.utils import ModelResponse, Usage, map_finish_reason, CustomStreamWrapper
|
||||
import litellm
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
||||
from .base import BaseLLM
|
||||
import httpx
|
||||
|
||||
|
||||
|
@ -15,6 +16,8 @@ class AnthropicConstants(Enum):
|
|||
HUMAN_PROMPT = "\n\nHuman: "
|
||||
AI_PROMPT = "\n\nAssistant: "
|
||||
|
||||
# constants from https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/_constants.py
|
||||
|
||||
|
||||
class AnthropicError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
|
@ -36,7 +39,9 @@ class AnthropicConfig:
|
|||
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = 4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
|
||||
max_tokens: Optional[int] = (
|
||||
4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
|
||||
)
|
||||
stop_sequences: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
|
@ -46,7 +51,9 @@ class AnthropicConfig:
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = 4096, # You can pass in a value yourself or use the default value 4096
|
||||
max_tokens: Optional[
|
||||
int
|
||||
] = 4096, # You can pass in a value yourself or use the default value 4096
|
||||
stop_sequences: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
|
@ -95,121 +102,23 @@ def validate_environment(api_key, user_headers):
|
|||
return headers
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
):
|
||||
headers = validate_environment(api_key, headers)
|
||||
_is_function_call = False
|
||||
messages = copy.deepcopy(messages)
|
||||
optional_params = copy.deepcopy(optional_params)
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
# Separate system prompt from rest of message
|
||||
system_prompt_indices = []
|
||||
system_prompt = ""
|
||||
for idx, message in enumerate(messages):
|
||||
if message["role"] == "system":
|
||||
system_prompt += message["content"]
|
||||
system_prompt_indices.append(idx)
|
||||
if len(system_prompt_indices) > 0:
|
||||
for idx in reversed(system_prompt_indices):
|
||||
messages.pop(idx)
|
||||
if len(system_prompt) > 0:
|
||||
optional_params["system"] = system_prompt
|
||||
# Format rest of message according to anthropic guidelines
|
||||
try:
|
||||
messages = prompt_factory(
|
||||
model=model, messages=messages, custom_llm_provider="anthropic"
|
||||
)
|
||||
except Exception as e:
|
||||
raise AnthropicError(status_code=400, message=str(e))
|
||||
|
||||
## Load Config
|
||||
config = litellm.AnthropicConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
## Handle Tool Calling
|
||||
if "tools" in optional_params:
|
||||
_is_function_call = True
|
||||
headers["anthropic-beta"] = "tools-2024-04-04"
|
||||
|
||||
anthropic_tools = []
|
||||
for tool in optional_params["tools"]:
|
||||
new_tool = tool["function"]
|
||||
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
|
||||
anthropic_tools.append(new_tool)
|
||||
|
||||
optional_params["tools"] = anthropic_tools
|
||||
|
||||
stream = optional_params.pop("stream", None)
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
print_verbose(f"_is_function_call: {_is_function_call}")
|
||||
## COMPLETION CALL
|
||||
if (
|
||||
stream and not _is_function_call
|
||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||
print_verbose("makes anthropic streaming POST request")
|
||||
data["stream"] = stream
|
||||
response = requests.post(
|
||||
api_base,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise AnthropicError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
|
||||
return response.iter_lines()
|
||||
else:
|
||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
||||
if response.status_code != 200:
|
||||
raise AnthropicError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
class AnthropicChatCompletion(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def process_response(
|
||||
self,
|
||||
model,
|
||||
response,
|
||||
model_response,
|
||||
_is_function_call,
|
||||
stream,
|
||||
logging_obj,
|
||||
api_key,
|
||||
data,
|
||||
messages,
|
||||
print_verbose,
|
||||
):
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
|
@ -327,6 +236,272 @@ def completion(
|
|||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
async def acompletion_stream_function(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
stream,
|
||||
_is_function_call,
|
||||
data=None,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
):
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
)
|
||||
response = await self.async_handler.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise AnthropicError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
|
||||
completion_stream = response.aiter_lines()
|
||||
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider="anthropic",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return streamwrapper
|
||||
|
||||
async def acompletion_function(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
stream,
|
||||
_is_function_call,
|
||||
data=None,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
):
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
)
|
||||
response = await self.async_handler.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
_is_function_call=_is_function_call,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
acompletion=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
):
|
||||
headers = validate_environment(api_key, headers)
|
||||
_is_function_call = False
|
||||
messages = copy.deepcopy(messages)
|
||||
optional_params = copy.deepcopy(optional_params)
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
# Separate system prompt from rest of message
|
||||
system_prompt_indices = []
|
||||
system_prompt = ""
|
||||
for idx, message in enumerate(messages):
|
||||
if message["role"] == "system":
|
||||
system_prompt += message["content"]
|
||||
system_prompt_indices.append(idx)
|
||||
if len(system_prompt_indices) > 0:
|
||||
for idx in reversed(system_prompt_indices):
|
||||
messages.pop(idx)
|
||||
if len(system_prompt) > 0:
|
||||
optional_params["system"] = system_prompt
|
||||
# Format rest of message according to anthropic guidelines
|
||||
try:
|
||||
messages = prompt_factory(
|
||||
model=model, messages=messages, custom_llm_provider="anthropic"
|
||||
)
|
||||
except Exception as e:
|
||||
raise AnthropicError(status_code=400, message=str(e))
|
||||
|
||||
## Load Config
|
||||
config = litellm.AnthropicConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
## Handle Tool Calling
|
||||
if "tools" in optional_params:
|
||||
_is_function_call = True
|
||||
headers["anthropic-beta"] = "tools-2024-04-04"
|
||||
|
||||
anthropic_tools = []
|
||||
for tool in optional_params["tools"]:
|
||||
new_tool = tool["function"]
|
||||
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
|
||||
anthropic_tools.append(new_tool)
|
||||
|
||||
optional_params["tools"] = anthropic_tools
|
||||
|
||||
stream = optional_params.pop("stream", None)
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"api_base": api_base,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
print_verbose(f"_is_function_call: {_is_function_call}")
|
||||
if acompletion == True:
|
||||
if (
|
||||
stream and not _is_function_call
|
||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||
print_verbose("makes async anthropic streaming POST request")
|
||||
data["stream"] = stream
|
||||
return self.acompletion_stream_function(
|
||||
model=model,
|
||||
messages=messages,
|
||||
data=data,
|
||||
api_base=api_base,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
stream=stream,
|
||||
_is_function_call=_is_function_call,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
)
|
||||
else:
|
||||
return self.acompletion_function(
|
||||
model=model,
|
||||
messages=messages,
|
||||
data=data,
|
||||
api_base=api_base,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
stream=stream,
|
||||
_is_function_call=_is_function_call,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
)
|
||||
else:
|
||||
## COMPLETION CALL
|
||||
if (
|
||||
stream and not _is_function_call
|
||||
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
||||
print_verbose("makes anthropic streaming POST request")
|
||||
data["stream"] = stream
|
||||
response = requests.post(
|
||||
api_base,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise AnthropicError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
|
||||
completion_stream = response.iter_lines()
|
||||
streaming_response = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider="anthropic",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return streaming_response
|
||||
|
||||
else:
|
||||
response = requests.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise AnthropicError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
_is_function_call=_is_function_call,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
|
||||
def embedding(self):
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
||||
|
||||
|
||||
class ModelResponseIterator:
|
||||
def __init__(self, model_response):
|
||||
|
@ -352,8 +527,3 @@ class ModelResponseIterator:
|
|||
raise StopAsyncIteration
|
||||
self.is_done = True
|
||||
return self.model_response
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
from litellm.utils import ModelResponse, Usage, CustomStreamWrapper
|
||||
import litellm
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
import httpx
|
||||
|
@ -162,8 +162,15 @@ def completion(
|
|||
raise AnthropicError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
completion_stream = response.iter_lines()
|
||||
stream_response = CustomStreamWrapper(
|
||||
completion_stream=completion_stream,
|
||||
model=model,
|
||||
custom_llm_provider="anthropic",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return stream_response
|
||||
|
||||
return response.iter_lines()
|
||||
else:
|
||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
||||
if response.status_code != 200:
|
||||
|
|
|
@ -1,21 +1,34 @@
|
|||
import httpx, asyncio
|
||||
from typing import Optional
|
||||
from typing import Optional, Union, Mapping, Any
|
||||
|
||||
# https://www.python-httpx.org/advanced/timeouts
|
||||
_DEFAULT_TIMEOUT = httpx.Timeout(timeout=5.0, connect=5.0)
|
||||
|
||||
|
||||
class AsyncHTTPHandler:
|
||||
def __init__(self, concurrent_limit=1000):
|
||||
def __init__(
|
||||
self, timeout: httpx.Timeout = _DEFAULT_TIMEOUT, concurrent_limit=1000
|
||||
):
|
||||
# Create a client with a connection pool
|
||||
self.client = httpx.AsyncClient(
|
||||
timeout=timeout,
|
||||
limits=httpx.Limits(
|
||||
max_connections=concurrent_limit,
|
||||
max_keepalive_connections=concurrent_limit,
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
async def close(self):
|
||||
# Close the client when you're done with it
|
||||
await self.client.aclose()
|
||||
|
||||
async def __aenter__(self):
|
||||
return self.client
|
||||
|
||||
async def __aexit__(self):
|
||||
# close the client when exiting
|
||||
await self.client.aclose()
|
||||
|
||||
async def get(
|
||||
self, url: str, params: Optional[dict] = None, headers: Optional[dict] = None
|
||||
):
|
||||
|
@ -25,12 +38,15 @@ class AsyncHTTPHandler:
|
|||
async def post(
|
||||
self,
|
||||
url: str,
|
||||
data: Optional[dict] = None,
|
||||
data: Optional[Union[dict, str]] = None, # type: ignore
|
||||
params: Optional[dict] = None,
|
||||
headers: Optional[dict] = None,
|
||||
):
|
||||
response = await self.client.post(
|
||||
url, data=data, params=params, headers=headers
|
||||
url,
|
||||
data=data, # type: ignore
|
||||
params=params,
|
||||
headers=headers,
|
||||
)
|
||||
return response
|
||||
|
||||
|
|
|
@ -39,7 +39,6 @@ from litellm.utils import (
|
|||
get_optional_params_image_gen,
|
||||
)
|
||||
from .llms import (
|
||||
anthropic,
|
||||
anthropic_text,
|
||||
together_ai,
|
||||
ai21,
|
||||
|
@ -68,6 +67,7 @@ from .llms import (
|
|||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||
from .llms.azure import AzureChatCompletion
|
||||
from .llms.azure_text import AzureTextCompletion
|
||||
from .llms.anthropic import AnthropicChatCompletion
|
||||
from .llms.huggingface_restapi import Huggingface
|
||||
from .llms.prompt_templates.factory import (
|
||||
prompt_factory,
|
||||
|
@ -99,6 +99,7 @@ from litellm.utils import (
|
|||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
openai_chat_completions = OpenAIChatCompletion()
|
||||
openai_text_completions = OpenAITextCompletion()
|
||||
anthropic_chat_completions = AnthropicChatCompletion()
|
||||
azure_chat_completions = AzureChatCompletion()
|
||||
azure_text_completions = AzureTextCompletion()
|
||||
huggingface = Huggingface()
|
||||
|
@ -304,6 +305,7 @@ async def acompletion(
|
|||
or custom_llm_provider == "vertex_ai"
|
||||
or custom_llm_provider == "gemini"
|
||||
or custom_llm_provider == "sagemaker"
|
||||
or custom_llm_provider == "anthropic"
|
||||
or custom_llm_provider in litellm.openai_compatible_providers
|
||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -1180,10 +1182,11 @@ def completion(
|
|||
or get_secret("ANTHROPIC_API_BASE")
|
||||
or "https://api.anthropic.com/v1/messages"
|
||||
)
|
||||
response = anthropic.completion(
|
||||
response = anthropic_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
acompletion=acompletion,
|
||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
|
@ -1195,19 +1198,6 @@ def completion(
|
|||
logging_obj=logging,
|
||||
headers=headers,
|
||||
)
|
||||
if (
|
||||
"stream" in optional_params
|
||||
and optional_params["stream"] == True
|
||||
and not isinstance(response, CustomStreamWrapper)
|
||||
):
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
response,
|
||||
model,
|
||||
custom_llm_provider="anthropic",
|
||||
logging_obj=logging,
|
||||
)
|
||||
|
||||
if optional_params.get("stream", False) or acompletion == True:
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
|
|
|
@ -831,22 +831,25 @@ def test_bedrock_claude_3_streaming():
|
|||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_claude_3_streaming_finish_reason():
|
||||
@pytest.mark.asyncio
|
||||
async def test_claude_3_streaming_finish_reason():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
messages = [
|
||||
{"role": "system", "content": "Be helpful"},
|
||||
{"role": "user", "content": "What do you know?"},
|
||||
]
|
||||
response: ModelResponse = completion( # type: ignore
|
||||
response: ModelResponse = await litellm.acompletion( # type: ignore
|
||||
model="claude-3-opus-20240229",
|
||||
messages=messages,
|
||||
stream=True,
|
||||
max_tokens=10,
|
||||
)
|
||||
complete_response = ""
|
||||
# Add any assertions here to check the response
|
||||
# Add any assertions here to-check the response
|
||||
num_finish_reason = 0
|
||||
for idx, chunk in enumerate(response):
|
||||
async for chunk in response:
|
||||
print(f"chunk: {chunk}")
|
||||
if isinstance(chunk, ModelResponse):
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
num_finish_reason += 1
|
||||
|
@ -2285,7 +2288,7 @@ async def test_acompletion_claude_3_function_call_with_streaming():
|
|||
elif chunk.choices[0].finish_reason is not None: # last chunk
|
||||
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
||||
idx += 1
|
||||
# raise Exception("it worked!")
|
||||
# raise Exception("it worked! ")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
|
|
@ -8764,7 +8764,9 @@ class CustomStreamWrapper:
|
|||
return hold, curr_chunk
|
||||
|
||||
def handle_anthropic_chunk(self, chunk):
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
str_line = chunk
|
||||
if isinstance(chunk, bytes): # Handle binary data
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
text = ""
|
||||
is_finished = False
|
||||
finish_reason = None
|
||||
|
@ -10024,6 +10026,7 @@ class CustomStreamWrapper:
|
|||
or self.custom_llm_provider == "custom_openai"
|
||||
or self.custom_llm_provider == "text-completion-openai"
|
||||
or self.custom_llm_provider == "azure_text"
|
||||
or self.custom_llm_provider == "anthropic"
|
||||
or self.custom_llm_provider == "huggingface"
|
||||
or self.custom_llm_provider == "ollama"
|
||||
or self.custom_llm_provider == "ollama_chat"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue