fix(main.py): keep client consistent across calls + exponential backoff retry on ratelimit errors

This commit is contained in:
Krrish Dholakia 2023-11-14 16:25:36 -08:00
parent 5963d9d283
commit a7222f257c
9 changed files with 239 additions and 131 deletions

View file

@ -108,6 +108,7 @@ class Completions():
response = completion(model=model, messages=messages, **self.params)
return response
@client
async def acompletion(*args, **kwargs):
"""
Asynchronously executes a litellm.completion() call for any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
@ -149,63 +150,51 @@ async def acompletion(*args, **kwargs):
"""
loop = asyncio.get_event_loop()
model = args[0] if len(args) > 0 else kwargs["model"]
messages = args[1] if len(args) > 1 else kwargs["messages"]
### INITIALIZE LOGGING OBJECT ###
kwargs["litellm_call_id"] = str(uuid.uuid4())
start_time = datetime.datetime.now()
logging_obj = Logging(model=model, messages=messages, stream=kwargs.get("stream", False), litellm_call_id=kwargs["litellm_call_id"], function_id=kwargs.get("id", None), call_type="completion", start_time=start_time)
### PASS ARGS TO COMPLETION ###
kwargs["litellm_logging_obj"] = logging_obj
kwargs["acompletion"] = True
kwargs["model"] = model
kwargs["messages"] = messages
# Use a partial function to pass your keyword arguments
func = partial(completion, *args, **kwargs)
try:
# Use a partial function to pass your keyword arguments
func = partial(completion, *args, **kwargs)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
# Add the context to the function
ctx = contextvars.copy_context()
func_with_context = partial(ctx.run, func)
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=kwargs.get("api_base", None))
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=kwargs.get("api_base", None))
if (custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "text-completion-openai"): # currently implemented aiohttp calls for just azure and openai, soon all.
if kwargs.get("stream", False):
response = completion(*args, **kwargs)
else:
# Await normally
init_response = completion(*args, **kwargs)
if isinstance(init_response, dict) or isinstance(init_response, ModelResponse):
response = init_response
if (custom_llm_provider == "openai"
or custom_llm_provider == "azure"
or custom_llm_provider == "custom_openai"
or custom_llm_provider == "text-completion-openai"): # currently implemented aiohttp calls for just azure and openai, soon all.
if kwargs.get("stream", False):
response = completion(*args, **kwargs)
else:
response = await init_response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False): # return an async generator
# do not change this
# for stream = True, always return an async generator
# See OpenAI acreate https://github.com/openai/openai-python/blob/5d50e9e3b39540af782ca24e65c290343d86e1a9/openai/api_resources/abstract/engine_api_resource.py#L193
# return response
return(
line
async for line in response
)
else:
end_time = datetime.datetime.now()
# [OPTIONAL] ADD TO CACHE
if litellm.caching or litellm.caching_with_models or litellm.cache != None: # user init a cache object
litellm.cache.add_cache(response, *args, **kwargs)
# Await normally
init_response = completion(*args, **kwargs)
if isinstance(init_response, dict) or isinstance(init_response, ModelResponse): ## CACHING SCENARIO
response = init_response
else:
response = await init_response
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if kwargs.get("stream", False): # return an async generator
# do not change this
# for stream = True, always return an async generator
# See OpenAI acreate https://github.com/openai/openai-python/blob/5d50e9e3b39540af782ca24e65c290343d86e1a9/openai/api_resources/abstract/engine_api_resource.py#L193
# return response
return(
line
async for line in response
)
else:
return response
except Exception as e:
## Map to OpenAI Exception
raise exception_type(
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
)
# LOG SUCCESS
logging_obj.success_handler(response, start_time, end_time)
# RETURN RESULT
response._response_ms = (end_time - start_time).total_seconds() * 1000 # return response latency in ms like openai
return response
def mock_completion(model: str, messages: List, stream: Optional[bool] = False, mock_response: str = "This is a mock request", **kwargs):
"""
@ -1420,8 +1409,14 @@ def completion_with_retries(*args, **kwargs):
raise Exception(f"tenacity import failed please run `pip install tenacity`. Error{e}")
num_retries = kwargs.pop("num_retries", 3)
retryer = tenacity.Retrying(stop=tenacity.stop_after_attempt(num_retries), reraise=True)
return retryer(completion, *args, **kwargs)
retry_strategy = kwargs.pop("retry_strategy", "constant_retry")
original_function = kwargs.pop("original_function", completion)
if retry_strategy == "constant_retry":
retryer = tenacity.Retrying(stop=tenacity.stop_after_attempt(num_retries), reraise=True)
elif retry_strategy == "exponential_backoff_retry":
retryer = tenacity.Retrying(wait=tenacity.wait_exponential(multiplier=1, max=10), stop=tenacity.stop_after_attempt(num_retries), reraise=True)
return retryer(original_function, *args, **kwargs)
def batch_completion(