docs mcp docs update

This commit is contained in:
Ishaan Jaff 2025-03-21 17:21:40 -07:00
parent b006e325cc
commit a8cf71973d
4 changed files with 29 additions and 18 deletions

View file

@ -21,13 +21,22 @@ Use Model Context Protocol with LiteLLM
LiteLLM acts as a MCP bridge to utilize MCP tools with all LiteLLM supported models. LiteLLM offers the following features for using MCP
- **List** Available MCP Tools: OpenAI clients can view all available MCP tools
- `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools
- **Call** MCP Tools: OpenAI clients can call MCP tools
- `litellm.experimental_mcp_client.call_openai_tool` to call an OpenAI tool on an MCP server
## Usage
### 1. List Available MCP Tools
In this example we'll use `litellm.experimental_mcp_client.load_mcp_tools` to list all available MCP tools on any MCP server. This method can be used in two ways:
- `format="mcp"` - (default) Return MCP tools
- Returns: `mcp.types.Tool`
- `format="openai"` - Return MCP tools converted to OpenAI API compatible tools. Allows using with OpenAI endpoints.
- Returns: `openai.types.chat.ChatCompletionToolParam`
<Tabs>
<TabItem value="sdk" label="LiteLLM Python SDK">
@ -36,12 +45,8 @@ LiteLLM acts as a MCP bridge to utilize MCP tools with all LiteLLM supported mod
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from litellm.mcp_client.tools import (
load_mcp_tools,
transform_openai_tool_to_mcp_tool,
call_openai_tool,
)
import litellm
from litellm import experimental_mcp_client
server_params = StdioServerParameters(
@ -56,12 +61,10 @@ async with stdio_client(server_params) as (read, write):
await session.initialize()
# Get tools
tools = await load_mcp_tools(session=session, format="openai")
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
# Create and run the agent
messages = [{"role": "user", "content": "what's (3 + 5)"}]
print(os.getenv("OPENAI_API_KEY"))
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),