mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
fix(openai.py): handling extra headers
This commit is contained in:
parent
9e072f87bd
commit
a94c09c13c
6 changed files with 98 additions and 118 deletions
|
@ -5,7 +5,8 @@ from .base import BaseLLM
|
|||
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object, Usage
|
||||
from typing import Callable, Optional
|
||||
import aiohttp, requests
|
||||
import litellm, openai
|
||||
import litellm
|
||||
from openai import OpenAI, AsyncOpenAI
|
||||
|
||||
class OpenAIError(Exception):
|
||||
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
|
||||
|
@ -154,46 +155,9 @@ class OpenAITextCompletionConfig():
|
|||
and v is not None}
|
||||
|
||||
class OpenAIChatCompletion(BaseLLM):
|
||||
openai_client: openai.Client
|
||||
openai_aclient: openai.AsyncClient
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.openai_client = openai.OpenAI()
|
||||
self.openai_aclient = openai.AsyncOpenAI()
|
||||
|
||||
def validate_environment(self, api_key, api_base, headers):
|
||||
if headers is None:
|
||||
headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
self.openai_client.api_key = api_key
|
||||
self.openai_aclient.api_key = api_key
|
||||
if api_base:
|
||||
if self.openai_client.base_url is None or self.openai_client.base_url != api_base:
|
||||
if api_base.endswith("/"):
|
||||
self.openai_client._base_url = httpx.URL(url=api_base)
|
||||
else:
|
||||
self.openai_client._base_url = httpx.URL(url=api_base+"/")
|
||||
if self.openai_aclient.base_url is None or self.openai_aclient.base_url != api_base:
|
||||
if api_base.endswith("/"):
|
||||
self.openai_aclient._base_url = httpx.URL(url=api_base)
|
||||
else:
|
||||
self.openai_aclient._base_url = httpx.URL(url=api_base+"/")
|
||||
|
||||
return headers
|
||||
|
||||
def _retry_request(self, *args, **kwargs):
|
||||
self._num_retry_httpx_errors -= 1
|
||||
|
||||
time.sleep(1)
|
||||
|
||||
original_function = kwargs.pop("original_function")
|
||||
|
||||
return original_function(*args, **kwargs)
|
||||
|
||||
def completion(self,
|
||||
model_response: ModelResponse,
|
||||
|
@ -211,7 +175,8 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
super().completion()
|
||||
exception_mapping_worked = False
|
||||
try:
|
||||
headers = self.validate_environment(api_key=api_key, api_base=api_base, headers=headers)
|
||||
if headers:
|
||||
optional_params["extra_headers"] = headers
|
||||
if model is None or messages is None:
|
||||
raise OpenAIError(status_code=422, message=f"Missing model or messages")
|
||||
|
||||
|
@ -232,13 +197,14 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
try:
|
||||
if acompletion is True:
|
||||
if optional_params.get("stream", False):
|
||||
return self.async_streaming(logging_obj=logging_obj, data=data, model=model)
|
||||
return self.async_streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key)
|
||||
else:
|
||||
return self.acompletion(data=data, model_response=model_response)
|
||||
return self.acompletion(data=data, model_response=model_response, api_base=api_base, api_key=api_key)
|
||||
elif optional_params.get("stream", False):
|
||||
return self.streaming(logging_obj=logging_obj, data=data, model=model)
|
||||
return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key)
|
||||
else:
|
||||
response = self.openai_client.chat.completions.create(**data) # type: ignore
|
||||
openai_client = OpenAI(api_key=api_key, base_url=api_base)
|
||||
response = openai_client.chat.completions.create(**data) # type: ignore
|
||||
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
|
||||
|
@ -267,10 +233,13 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
|
||||
async def acompletion(self,
|
||||
data: dict,
|
||||
model_response: ModelResponse):
|
||||
model_response: ModelResponse,
|
||||
api_base: str,
|
||||
api_key: str):
|
||||
response = None
|
||||
try:
|
||||
response = await self.openai_aclient.chat.completions.create(**data)
|
||||
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base)
|
||||
response = await openai_aclient.chat.completions.create(**data)
|
||||
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if response and hasattr(response, "text"):
|
||||
|
@ -281,9 +250,12 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
def streaming(self,
|
||||
logging_obj,
|
||||
data: dict,
|
||||
model: str
|
||||
model: str,
|
||||
api_key: str,
|
||||
api_base: str
|
||||
):
|
||||
response = self.openai_client.chat.completions.create(**data)
|
||||
openai_client = OpenAI(api_key=api_key, base_url=api_base)
|
||||
response = openai_client.chat.completions.create(**data)
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
|
@ -291,8 +263,11 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
async def async_streaming(self,
|
||||
logging_obj,
|
||||
data: dict,
|
||||
model: str):
|
||||
response = await self.openai_aclient.chat.completions.create(**data)
|
||||
model: str,
|
||||
api_key: str,
|
||||
api_base: str):
|
||||
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base)
|
||||
response = await openai_aclient.chat.completions.create(**data)
|
||||
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
||||
async for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
|
@ -309,8 +284,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
super().embedding()
|
||||
exception_mapping_worked = False
|
||||
try:
|
||||
headers = self.validate_environment(api_key, api_base=api_base, headers=None)
|
||||
api_base = f"{api_base}/embeddings"
|
||||
openai_client = OpenAI(api_key=api_key, api_base=api_base)
|
||||
model = model
|
||||
data = {
|
||||
"model": model,
|
||||
|
@ -325,7 +299,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = self.openai_client.embeddings.create(**data) # type: ignore
|
||||
response = openai_client.embeddings.create(**data) # type: ignore
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=input,
|
||||
|
|
|
@ -941,8 +941,6 @@ def completion(
|
|||
{
|
||||
"HTTP-Referer": openrouter_site_url,
|
||||
"X-Title": openrouter_app_name,
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
)
|
||||
|
||||
|
|
|
@ -50,6 +50,8 @@ def test_async_response_openai():
|
|||
|
||||
asyncio.run(test_get_response())
|
||||
|
||||
# test_async_response_openai()
|
||||
|
||||
def test_async_response_azure():
|
||||
import asyncio
|
||||
litellm.set_verbose = True
|
||||
|
@ -80,6 +82,8 @@ def test_async_anyscale_response():
|
|||
|
||||
asyncio.run(test_get_response())
|
||||
|
||||
# test_async_anyscale_response()
|
||||
|
||||
def test_get_response_streaming():
|
||||
import asyncio
|
||||
async def test_async_call():
|
||||
|
@ -87,7 +91,7 @@ def test_get_response_streaming():
|
|||
messages = [{"content": user_message, "role": "user"}]
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
response = await acompletion(model="azure/chatgpt-v-2", messages=messages, stream=True)
|
||||
response = await acompletion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
print(type(response))
|
||||
|
||||
import inspect
|
||||
|
@ -110,7 +114,7 @@ def test_get_response_streaming():
|
|||
asyncio.run(test_async_call())
|
||||
|
||||
|
||||
test_get_response_streaming()
|
||||
# test_get_response_streaming()
|
||||
|
||||
def test_get_response_non_openai_streaming():
|
||||
import asyncio
|
||||
|
@ -141,3 +145,5 @@ def test_get_response_non_openai_streaming():
|
|||
pytest.fail(f"An exception occurred: {e}")
|
||||
return response
|
||||
asyncio.run(test_async_call())
|
||||
|
||||
test_get_response_non_openai_streaming()
|
|
@ -494,7 +494,7 @@ def test_completion_openrouter1():
|
|||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_openrouter1()
|
||||
test_completion_openrouter1()
|
||||
|
||||
def test_completion_hf_model_no_provider():
|
||||
try:
|
||||
|
@ -562,7 +562,7 @@ def test_completion_azure():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_completion_azure()
|
||||
# test_completion_azure()
|
||||
|
||||
def test_azure_openai_ad_token():
|
||||
# this tests if the azure ad token is set in the request header
|
||||
|
|
|
@ -1,69 +1,69 @@
|
|||
# import sys, os
|
||||
# import traceback
|
||||
# from dotenv import load_dotenv
|
||||
# import copy
|
||||
import sys, os
|
||||
import traceback
|
||||
from dotenv import load_dotenv
|
||||
import copy
|
||||
|
||||
# load_dotenv()
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../..")
|
||||
# ) # Adds the parent directory to the system path
|
||||
# import asyncio
|
||||
# from litellm import Router, Timeout
|
||||
load_dotenv()
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import asyncio
|
||||
from litellm import Router, Timeout
|
||||
|
||||
|
||||
# async def call_acompletion(semaphore, router: Router, input_data):
|
||||
# async with semaphore:
|
||||
# try:
|
||||
# # Use asyncio.wait_for to set a timeout for the task
|
||||
# response = await router.acompletion(**input_data)
|
||||
# # Handle the response as needed
|
||||
# return response
|
||||
# except Timeout:
|
||||
# print(f"Task timed out: {input_data}")
|
||||
# return None # You may choose to return something else or raise an exception
|
||||
async def call_acompletion(semaphore, router: Router, input_data):
|
||||
async with semaphore:
|
||||
try:
|
||||
# Use asyncio.wait_for to set a timeout for the task
|
||||
response = await router.acompletion(**input_data)
|
||||
# Handle the response as needed
|
||||
return response
|
||||
except Timeout:
|
||||
print(f"Task timed out: {input_data}")
|
||||
return None # You may choose to return something else or raise an exception
|
||||
|
||||
|
||||
# async def main():
|
||||
# # Initialize the Router
|
||||
# model_list= [{
|
||||
# "model_name": "gpt-3.5-turbo",
|
||||
# "litellm_params": {
|
||||
# "model": "gpt-3.5-turbo",
|
||||
# "api_key": os.getenv("OPENAI_API_KEY"),
|
||||
# },
|
||||
# }, {
|
||||
# "model_name": "gpt-3.5-turbo",
|
||||
# "litellm_params": {
|
||||
# "model": "azure/chatgpt-v-2",
|
||||
# "api_key": os.getenv("AZURE_API_KEY"),
|
||||
# "api_base": os.getenv("AZURE_API_BASE"),
|
||||
# "api_version": os.getenv("AZURE_API_VERSION")
|
||||
# },
|
||||
# }, {
|
||||
# "model_name": "gpt-3.5-turbo",
|
||||
# "litellm_params": {
|
||||
# "model": "azure/chatgpt-functioncalling",
|
||||
# "api_key": os.getenv("AZURE_API_KEY"),
|
||||
# "api_base": os.getenv("AZURE_API_BASE"),
|
||||
# "api_version": os.getenv("AZURE_API_VERSION")
|
||||
# },
|
||||
# }]
|
||||
# router = Router(model_list=model_list, num_retries=3, timeout=10)
|
||||
async def main():
|
||||
# Initialize the Router
|
||||
model_list= [{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": os.getenv("OPENAI_API_KEY"),
|
||||
},
|
||||
}, {
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "azure/chatgpt-v-2",
|
||||
"api_key": os.getenv("AZURE_API_KEY"),
|
||||
"api_base": os.getenv("AZURE_API_BASE"),
|
||||
"api_version": os.getenv("AZURE_API_VERSION")
|
||||
},
|
||||
}, {
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "azure/chatgpt-functioncalling",
|
||||
"api_key": os.getenv("AZURE_API_KEY"),
|
||||
"api_base": os.getenv("AZURE_API_BASE"),
|
||||
"api_version": os.getenv("AZURE_API_VERSION")
|
||||
},
|
||||
}]
|
||||
router = Router(model_list=model_list, num_retries=3, timeout=10)
|
||||
|
||||
# # Create a semaphore with a capacity of 100
|
||||
# semaphore = asyncio.Semaphore(100)
|
||||
# Create a semaphore with a capacity of 100
|
||||
semaphore = asyncio.Semaphore(100)
|
||||
|
||||
# # List to hold all task references
|
||||
# tasks = []
|
||||
# List to hold all task references
|
||||
tasks = []
|
||||
|
||||
# # Launch 1000 tasks
|
||||
# for _ in range(1000):
|
||||
# task = asyncio.create_task(call_acompletion(semaphore, router, {"model": "gpt-3.5-turbo", "messages": [{"role":"user", "content": "Hey, how's it going?"}]}))
|
||||
# tasks.append(task)
|
||||
# Launch 1000 tasks
|
||||
for _ in range(1000):
|
||||
task = asyncio.create_task(call_acompletion(semaphore, router, {"model": "gpt-3.5-turbo", "messages": [{"role":"user", "content": "Hey, how's it going?"}]}))
|
||||
tasks.append(task)
|
||||
|
||||
# # Wait for all tasks to complete
|
||||
# responses = await asyncio.gather(*tasks)
|
||||
# # Process responses as needed
|
||||
# print(f"NUMBER OF COMPLETED TASKS: {len(responses)}")
|
||||
# # Run the main function
|
||||
# asyncio.run(main())
|
||||
# Wait for all tasks to complete
|
||||
responses = await asyncio.gather(*tasks)
|
||||
# Process responses as needed
|
||||
print(f"NUMBER OF COMPLETED TASKS: {len(responses)}")
|
||||
# Run the main function
|
||||
asyncio.run(main())
|
||||
|
|
|
@ -506,6 +506,8 @@ class Logging:
|
|||
|
||||
# User Logging -> if you pass in a custom logging function
|
||||
headers = additional_args.get("headers", {})
|
||||
if headers is None:
|
||||
headers = {}
|
||||
data = additional_args.get("complete_input_dict", {})
|
||||
api_base = additional_args.get("api_base", "")
|
||||
masked_headers = {k: v[:-40] + '*' * 40 if len(v) > 40 else v for k, v in headers.items()}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue