mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 19:54:13 +00:00
(feat) litellm-proxy simplify proxy server
This commit is contained in:
parent
517af14c7e
commit
a99c1d6148
2 changed files with 268 additions and 502 deletions
|
@ -1,102 +1,10 @@
|
|||
import sys, os, platform, time, copy
|
||||
import threading
|
||||
import shutil, random, traceback
|
||||
|
||||
messages: list = []
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path - for litellm local dev
|
||||
|
||||
try:
|
||||
import uvicorn
|
||||
import fastapi
|
||||
import tomli as tomllib
|
||||
import appdirs
|
||||
import tomli_w
|
||||
import backoff
|
||||
except ImportError:
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
subprocess.check_call(
|
||||
[
|
||||
sys.executable,
|
||||
"-m",
|
||||
"pip",
|
||||
"install",
|
||||
"uvicorn",
|
||||
"fastapi",
|
||||
"tomli",
|
||||
"appdirs",
|
||||
"tomli-w",
|
||||
"backoff",
|
||||
]
|
||||
)
|
||||
import uvicorn
|
||||
import fastapi
|
||||
import tomli as tomllib
|
||||
import appdirs
|
||||
import tomli_w
|
||||
|
||||
try:
|
||||
from .llm import litellm_completion
|
||||
except ImportError as e:
|
||||
from llm import litellm_completion # type: ignore
|
||||
|
||||
import random
|
||||
|
||||
list_of_messages = [
|
||||
"'The thing I wish you improved is...'",
|
||||
"'A feature I really want is...'",
|
||||
"'The worst thing about this product is...'",
|
||||
"'This product would be better if...'",
|
||||
"'I don't like how this works...'",
|
||||
"'It would help me if you could add...'",
|
||||
"'This feature doesn't meet my needs because...'",
|
||||
"'I get frustrated when the product...'",
|
||||
]
|
||||
|
||||
|
||||
def generate_feedback_box():
|
||||
box_width = 60
|
||||
|
||||
# Select a random message
|
||||
message = random.choice(list_of_messages)
|
||||
|
||||
print()
|
||||
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
|
||||
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
|
||||
print("\033[1;37m" + "# {:^59} #\033[0m".format(message))
|
||||
print(
|
||||
"\033[1;37m"
|
||||
+ "# {:^59} #\033[0m".format("https://github.com/BerriAI/litellm/issues/new")
|
||||
)
|
||||
print("\033[1;37m" + "#" + " " * box_width + "#\033[0m")
|
||||
print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m")
|
||||
print()
|
||||
print(" Thank you for using LiteLLM! - Krrish & Ishaan")
|
||||
print()
|
||||
print()
|
||||
|
||||
|
||||
generate_feedback_box()
|
||||
|
||||
print()
|
||||
print(
|
||||
"\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m"
|
||||
)
|
||||
print()
|
||||
print("\033[1;34mDocs: https://docs.litellm.ai/docs/proxy_server\033[0m")
|
||||
print()
|
||||
|
||||
import litellm
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.routing import APIRouter
|
||||
from fastapi.encoders import jsonable_encoder
|
||||
from fastapi.responses import StreamingResponse, FileResponse
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
import json
|
||||
import logging
|
||||
|
||||
app = FastAPI(docs_url="/", title="LiteLLM API")
|
||||
router = APIRouter()
|
||||
|
@ -110,432 +18,53 @@ app.add_middleware(
|
|||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
user_api_base = None
|
||||
user_model = None
|
||||
user_debug = False
|
||||
user_max_tokens = None
|
||||
user_request_timeout = None
|
||||
user_temperature = None
|
||||
user_telemetry = True
|
||||
user_config = None
|
||||
user_headers = None
|
||||
local_logging = True # writes logs to a local api_log.json file for debugging
|
||||
model_router = litellm.Router()
|
||||
config_filename = "litellm.secrets.toml"
|
||||
config_dir = os.getcwd()
|
||||
config_dir = appdirs.user_config_dir("litellm")
|
||||
user_config_path = os.getenv(
|
||||
"LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename)
|
||||
)
|
||||
log_file = "api_log.json"
|
||||
|
||||
|
||||
#### HELPER FUNCTIONS ####
|
||||
def print_verbose(print_statement):
|
||||
global user_debug
|
||||
if user_debug:
|
||||
print(print_statement)
|
||||
|
||||
|
||||
def find_avatar_url(role):
|
||||
role = role.replace(" ", "%20")
|
||||
avatar_filename = f"avatars/{role}.png"
|
||||
avatar_url = f"/static/{avatar_filename}"
|
||||
return avatar_url
|
||||
|
||||
|
||||
def usage_telemetry(
|
||||
feature: str,
|
||||
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
|
||||
if user_telemetry:
|
||||
data = {"feature": feature} # "local_proxy_server"
|
||||
threading.Thread(
|
||||
target=litellm.utils.litellm_telemetry, args=(data,), daemon=True
|
||||
).start()
|
||||
|
||||
|
||||
def add_keys_to_config(key, value):
|
||||
# Check if file exists
|
||||
if os.path.exists(user_config_path):
|
||||
# Load existing file
|
||||
with open(user_config_path, "rb") as f:
|
||||
config = tomllib.load(f)
|
||||
else:
|
||||
# File doesn't exist, create empty config
|
||||
config = {}
|
||||
|
||||
# Add new key
|
||||
config.setdefault("keys", {})[key] = value
|
||||
|
||||
# Write config to file
|
||||
with open(user_config_path, "wb") as f:
|
||||
tomli_w.dump(config, f)
|
||||
|
||||
|
||||
def save_params_to_config(data: dict):
|
||||
# Check if file exists
|
||||
if os.path.exists(user_config_path):
|
||||
# Load existing file
|
||||
with open(user_config_path, "rb") as f:
|
||||
config = tomllib.load(f)
|
||||
else:
|
||||
# File doesn't exist, create empty config
|
||||
config = {}
|
||||
|
||||
config.setdefault("general", {})
|
||||
|
||||
## general config
|
||||
general_settings = data["general"]
|
||||
|
||||
for key, value in general_settings.items():
|
||||
config["general"][key] = value
|
||||
|
||||
## model-specific config
|
||||
config.setdefault("model", {})
|
||||
config["model"].setdefault(user_model, {})
|
||||
|
||||
user_model_config = data[user_model]
|
||||
model_key = model_key = user_model_config.pop("alias", user_model)
|
||||
config["model"].setdefault(model_key, {})
|
||||
for key, value in user_model_config.items():
|
||||
config["model"][model_key][key] = value
|
||||
|
||||
# Write config to file
|
||||
with open(user_config_path, "wb") as f:
|
||||
tomli_w.dump(config, f)
|
||||
|
||||
|
||||
def load_config():
|
||||
try:
|
||||
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging
|
||||
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
||||
with open(user_config_path, "rb") as f:
|
||||
user_config = tomllib.load(f)
|
||||
|
||||
## load keys
|
||||
if "keys" in user_config:
|
||||
for key in user_config["keys"]:
|
||||
os.environ[key] = user_config["keys"][
|
||||
key
|
||||
] # litellm can read keys from the environment
|
||||
## settings
|
||||
if "general" in user_config:
|
||||
litellm.add_function_to_prompt = user_config["general"].get(
|
||||
"add_function_to_prompt", True
|
||||
) # by default add function to prompt if unsupported by provider
|
||||
litellm.drop_params = user_config["general"].get(
|
||||
"drop_params", True
|
||||
) # by default drop params if unsupported by provider
|
||||
litellm.model_fallbacks = user_config["general"].get(
|
||||
"fallbacks", None
|
||||
) # fallback models in case initial completion call fails
|
||||
default_model = user_config["general"].get(
|
||||
"default_model", None
|
||||
) # route all requests to this model.
|
||||
|
||||
local_logging = user_config["general"].get("local_logging", True)
|
||||
|
||||
if user_model is None: # `litellm --model <model-name>`` > default_model.
|
||||
user_model = default_model
|
||||
|
||||
## load model config - to set this run `litellm --config`
|
||||
model_config = None
|
||||
if "model" in user_config:
|
||||
if user_model in user_config["model"]:
|
||||
model_config = user_config["model"][user_model]
|
||||
model_list = []
|
||||
for model in user_config["model"]:
|
||||
if "model_list" in user_config["model"][model]:
|
||||
model_list.extend(user_config["model"][model]["model_list"])
|
||||
if len(model_list) > 0:
|
||||
model_router.set_model_list(model_list=model_list)
|
||||
|
||||
print_verbose(f"user_config: {user_config}")
|
||||
print_verbose(f"model_config: {model_config}")
|
||||
print_verbose(f"user_model: {user_model}")
|
||||
if model_config is None:
|
||||
return
|
||||
|
||||
user_max_tokens = model_config.get("max_tokens", None)
|
||||
user_temperature = model_config.get("temperature", None)
|
||||
user_api_base = model_config.get("api_base", None)
|
||||
|
||||
## custom prompt template
|
||||
if "prompt_template" in model_config:
|
||||
model_prompt_template = model_config["prompt_template"]
|
||||
if (
|
||||
len(model_prompt_template.keys()) > 0
|
||||
): # if user has initialized this at all
|
||||
litellm.register_prompt_template(
|
||||
model=user_model,
|
||||
initial_prompt_value=model_prompt_template.get(
|
||||
"MODEL_PRE_PROMPT", ""
|
||||
),
|
||||
roles={
|
||||
"system": {
|
||||
"pre_message": model_prompt_template.get(
|
||||
"MODEL_SYSTEM_MESSAGE_START_TOKEN", ""
|
||||
),
|
||||
"post_message": model_prompt_template.get(
|
||||
"MODEL_SYSTEM_MESSAGE_END_TOKEN", ""
|
||||
),
|
||||
},
|
||||
"user": {
|
||||
"pre_message": model_prompt_template.get(
|
||||
"MODEL_USER_MESSAGE_START_TOKEN", ""
|
||||
),
|
||||
"post_message": model_prompt_template.get(
|
||||
"MODEL_USER_MESSAGE_END_TOKEN", ""
|
||||
),
|
||||
},
|
||||
"assistant": {
|
||||
"pre_message": model_prompt_template.get(
|
||||
"MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""
|
||||
),
|
||||
"post_message": model_prompt_template.get(
|
||||
"MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""
|
||||
),
|
||||
},
|
||||
},
|
||||
final_prompt_value=model_prompt_template.get(
|
||||
"MODEL_POST_PROMPT", ""
|
||||
),
|
||||
)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def initialize(
|
||||
model,
|
||||
alias,
|
||||
api_base,
|
||||
api_version,
|
||||
debug,
|
||||
temperature,
|
||||
max_tokens,
|
||||
request_timeout,
|
||||
max_budget,
|
||||
telemetry,
|
||||
drop_params,
|
||||
add_function_to_prompt,
|
||||
headers,
|
||||
save,
|
||||
):
|
||||
global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers
|
||||
user_model = model
|
||||
user_debug = debug
|
||||
load_config()
|
||||
dynamic_config = {"general": {}, user_model: {}}
|
||||
if headers: # model-specific param
|
||||
user_headers = headers
|
||||
dynamic_config[user_model]["headers"] = headers
|
||||
if api_base: # model-specific param
|
||||
user_api_base = api_base
|
||||
dynamic_config[user_model]["api_base"] = api_base
|
||||
if api_version:
|
||||
os.environ[
|
||||
"AZURE_API_VERSION"
|
||||
] = api_version # set this for azure - litellm can read this from the env
|
||||
if max_tokens: # model-specific param
|
||||
user_max_tokens = max_tokens
|
||||
dynamic_config[user_model]["max_tokens"] = max_tokens
|
||||
if temperature: # model-specific param
|
||||
user_temperature = temperature
|
||||
dynamic_config[user_model]["temperature"] = temperature
|
||||
if request_timeout:
|
||||
user_request_timeout = request_timeout
|
||||
dynamic_config[user_model]["request_timeout"] = request_timeout
|
||||
if alias: # model-specific param
|
||||
dynamic_config[user_model]["alias"] = alias
|
||||
if drop_params == True: # litellm-specific param
|
||||
litellm.drop_params = True
|
||||
dynamic_config["general"]["drop_params"] = True
|
||||
if add_function_to_prompt == True: # litellm-specific param
|
||||
litellm.add_function_to_prompt = True
|
||||
dynamic_config["general"]["add_function_to_prompt"] = True
|
||||
if max_budget: # litellm-specific param
|
||||
litellm.max_budget = max_budget
|
||||
dynamic_config["general"]["max_budget"] = max_budget
|
||||
if debug: # litellm-specific param
|
||||
litellm.set_verbose = True
|
||||
if save:
|
||||
save_params_to_config(dynamic_config)
|
||||
with open(user_config_path) as f:
|
||||
print(f.read())
|
||||
print("\033[1;32mDone successfully\033[0m")
|
||||
user_telemetry = telemetry
|
||||
usage_telemetry(feature="local_proxy_server")
|
||||
|
||||
|
||||
def track_cost_callback(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
start_time,
|
||||
end_time, # start/end time
|
||||
):
|
||||
# track cost like this
|
||||
# {
|
||||
# "Oct12": {
|
||||
# "gpt-4": 10,
|
||||
# "claude-2": 12.01,
|
||||
# },
|
||||
# "Oct 15": {
|
||||
# "ollama/llama2": 0.0,
|
||||
# "gpt2": 1.2
|
||||
# }
|
||||
# }
|
||||
try:
|
||||
# for streaming responses
|
||||
if "complete_streaming_response" in kwargs:
|
||||
# for tracking streaming cost we pass the "messages" and the output_text to litellm.completion_cost
|
||||
completion_response = kwargs["complete_streaming_response"]
|
||||
input_text = kwargs["messages"]
|
||||
output_text = completion_response["choices"][0]["message"]["content"]
|
||||
response_cost = litellm.completion_cost(
|
||||
model=kwargs["model"], messages=input_text, completion=output_text
|
||||
)
|
||||
model = kwargs["model"]
|
||||
|
||||
# for non streaming responses
|
||||
else:
|
||||
# we pass the completion_response obj
|
||||
if kwargs["stream"] != True:
|
||||
response_cost = litellm.completion_cost(
|
||||
completion_response=completion_response
|
||||
)
|
||||
model = completion_response["model"]
|
||||
|
||||
# read/write from json for storing daily model costs
|
||||
cost_data = {}
|
||||
try:
|
||||
with open("costs.json") as f:
|
||||
cost_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
cost_data = {}
|
||||
import datetime
|
||||
|
||||
date = datetime.datetime.now().strftime("%b-%d-%Y")
|
||||
if date not in cost_data:
|
||||
cost_data[date] = {}
|
||||
|
||||
if kwargs["model"] in cost_data[date]:
|
||||
cost_data[date][kwargs["model"]]["cost"] += response_cost
|
||||
cost_data[date][kwargs["model"]]["num_requests"] += 1
|
||||
else:
|
||||
cost_data[date][kwargs["model"]] = {
|
||||
"cost": response_cost,
|
||||
"num_requests": 1,
|
||||
}
|
||||
|
||||
with open("costs.json", "w") as f:
|
||||
json.dump(cost_data, f, indent=2)
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def logger(
|
||||
kwargs, # kwargs to completion
|
||||
completion_response=None, # response from completion
|
||||
start_time=None,
|
||||
end_time=None, # start/end time
|
||||
):
|
||||
log_event_type = kwargs["log_event_type"]
|
||||
try:
|
||||
if log_event_type == "pre_api_call":
|
||||
inference_params = copy.deepcopy(kwargs)
|
||||
timestamp = inference_params.pop("start_time")
|
||||
dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
||||
log_data = {dt_key: {"pre_api_call": inference_params}}
|
||||
|
||||
try:
|
||||
with open(log_file, "r") as f:
|
||||
existing_data = json.load(f)
|
||||
except FileNotFoundError:
|
||||
existing_data = {}
|
||||
|
||||
existing_data.update(log_data)
|
||||
|
||||
def write_to_log():
|
||||
with open(log_file, "w") as f:
|
||||
json.dump(existing_data, f, indent=2)
|
||||
|
||||
thread = threading.Thread(target=write_to_log, daemon=True)
|
||||
thread.start()
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
litellm.input_callback = [logger]
|
||||
litellm.success_callback = [logger]
|
||||
litellm.failure_callback = [logger]
|
||||
|
||||
|
||||
#### API ENDPOINTS ####
|
||||
@router.post("/v1/models")
|
||||
@router.get("/models") # if project requires model list
|
||||
def model_list():
|
||||
if user_model != None:
|
||||
return dict(
|
||||
data=[
|
||||
{
|
||||
"id": user_model,
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai",
|
||||
}
|
||||
],
|
||||
object="list",
|
||||
)
|
||||
else:
|
||||
all_models = litellm.utils.get_valid_models()
|
||||
return dict(
|
||||
data=[
|
||||
{
|
||||
"id": model,
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai",
|
||||
}
|
||||
for model in all_models
|
||||
],
|
||||
object="list",
|
||||
)
|
||||
|
||||
all_models = litellm.utils.get_valid_models()
|
||||
return dict(
|
||||
data=[
|
||||
{
|
||||
"id": model,
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai",
|
||||
}
|
||||
for model in all_models
|
||||
],
|
||||
object="list",
|
||||
)
|
||||
# for streaming
|
||||
def data_generator(response):
|
||||
print("inside generator")
|
||||
for chunk in response:
|
||||
print(f"returned chunk: {chunk}")
|
||||
yield f"data: {json.dumps(chunk)}\n\n"
|
||||
|
||||
@router.post("/v1/completions")
|
||||
@router.post("/completions")
|
||||
async def completion(request: Request):
|
||||
data = await request.json()
|
||||
return litellm_completion(data=data, type="completion", user_model=user_model, user_temperature=user_temperature,
|
||||
user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers,
|
||||
user_debug=user_debug, model_router=model_router, user_request_timeout=user_request_timeout)
|
||||
response = litellm.completion(
|
||||
**data
|
||||
)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
return response
|
||||
|
||||
|
||||
@router.post("/v1/chat/completions")
|
||||
@router.post("/chat/completions")
|
||||
async def chat_completion(request: Request):
|
||||
data = await request.json()
|
||||
print_verbose(f"data passed in: {data}")
|
||||
return litellm_completion(data, type="chat_completion", user_model=user_model,
|
||||
user_temperature=user_temperature, user_max_tokens=user_max_tokens,
|
||||
user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug, model_router=model_router, user_request_timeout=user_request_timeout)
|
||||
|
||||
|
||||
def print_cost_logs():
|
||||
with open("costs.json", "r") as f:
|
||||
# print this in green
|
||||
print("\033[1;32m")
|
||||
print(f.read())
|
||||
print("\033[0m")
|
||||
return
|
||||
|
||||
|
||||
@router.get("/ollama_logs")
|
||||
async def retrieve_server_log(request: Request):
|
||||
filepath = os.path.expanduser("~/.ollama/logs/server.log")
|
||||
return FileResponse(filepath)
|
||||
|
||||
response = litellm.completion(
|
||||
**data
|
||||
)
|
||||
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
|
||||
return StreamingResponse(data_generator(response), media_type='text/event-stream')
|
||||
return response
|
||||
|
||||
@router.get("/")
|
||||
async def home(request: Request):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue