mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
add test_function_calling_with_tool_response to base llm tests
This commit is contained in:
parent
a743b6fc1f
commit
aa1e13f65b
4 changed files with 62 additions and 15 deletions
|
@ -15,6 +15,12 @@ from litellm import verbose_logger
|
|||
from litellm.llms.custom_httpx.http_handler import HTTPHandler, get_async_httpx_client
|
||||
from litellm.types.llms.anthropic import *
|
||||
from litellm.types.llms.bedrock import MessageBlock as BedrockMessageBlock
|
||||
from litellm.types.llms.bedrock import ToolBlock as BedrockToolBlock
|
||||
from litellm.types.llms.bedrock import (
|
||||
ToolInputSchemaBlock as BedrockToolInputSchemaBlock,
|
||||
)
|
||||
from litellm.types.llms.bedrock import ToolJsonSchemaBlock as BedrockToolJsonSchemaBlock
|
||||
from litellm.types.llms.bedrock import ToolSpecBlock as BedrockToolSpecBlock
|
||||
from litellm.types.llms.custom_http import httpxSpecialProvider
|
||||
from litellm.types.llms.ollama import OllamaVisionModelObject
|
||||
from litellm.types.llms.openai import (
|
||||
|
@ -1041,10 +1047,10 @@ def convert_to_gemini_tool_call_invoke(
|
|||
if tool_calls is not None:
|
||||
for tool in tool_calls:
|
||||
if "function" in tool:
|
||||
gemini_function_call: Optional[
|
||||
VertexFunctionCall
|
||||
] = _gemini_tool_call_invoke_helper(
|
||||
function_call_params=tool["function"]
|
||||
gemini_function_call: Optional[VertexFunctionCall] = (
|
||||
_gemini_tool_call_invoke_helper(
|
||||
function_call_params=tool["function"]
|
||||
)
|
||||
)
|
||||
if gemini_function_call is not None:
|
||||
_parts_list.append(
|
||||
|
@ -1139,7 +1145,7 @@ def convert_to_gemini_tool_call_result(
|
|||
|
||||
|
||||
def convert_to_anthropic_tool_result(
|
||||
message: Union[ChatCompletionToolMessage, ChatCompletionFunctionMessage]
|
||||
message: Union[ChatCompletionToolMessage, ChatCompletionFunctionMessage],
|
||||
) -> AnthropicMessagesToolResultParam:
|
||||
"""
|
||||
OpenAI message with a tool result looks like:
|
||||
|
@ -1449,9 +1455,9 @@ def anthropic_messages_pt( # noqa: PLR0915
|
|||
)
|
||||
|
||||
if "cache_control" in _content_element:
|
||||
_anthropic_content_element[
|
||||
"cache_control"
|
||||
] = _content_element["cache_control"]
|
||||
_anthropic_content_element["cache_control"] = (
|
||||
_content_element["cache_control"]
|
||||
)
|
||||
user_content.append(_anthropic_content_element)
|
||||
elif m.get("type", "") == "text":
|
||||
m = cast(ChatCompletionTextObject, m)
|
||||
|
@ -1502,9 +1508,9 @@ def anthropic_messages_pt( # noqa: PLR0915
|
|||
)
|
||||
|
||||
if "cache_control" in _content_element:
|
||||
_anthropic_content_text_element[
|
||||
"cache_control"
|
||||
] = _content_element["cache_control"]
|
||||
_anthropic_content_text_element["cache_control"] = (
|
||||
_content_element["cache_control"]
|
||||
)
|
||||
|
||||
user_content.append(_anthropic_content_text_element)
|
||||
|
||||
|
@ -2491,7 +2497,7 @@ def _convert_to_bedrock_tool_call_invoke(
|
|||
|
||||
|
||||
def _convert_to_bedrock_tool_call_result(
|
||||
message: Union[ChatCompletionToolMessage, ChatCompletionFunctionMessage]
|
||||
message: Union[ChatCompletionToolMessage, ChatCompletionFunctionMessage],
|
||||
) -> BedrockContentBlock:
|
||||
"""
|
||||
OpenAI message with a tool result looks like:
|
||||
|
@ -2664,7 +2670,7 @@ def get_user_message_block_or_continue_message(
|
|||
def return_assistant_continue_message(
|
||||
assistant_continue_message: Optional[
|
||||
Union[str, ChatCompletionAssistantMessage]
|
||||
] = None
|
||||
] = None,
|
||||
) -> ChatCompletionAssistantMessage:
|
||||
if assistant_continue_message and isinstance(assistant_continue_message, str):
|
||||
return ChatCompletionAssistantMessage(
|
||||
|
@ -3462,7 +3468,13 @@ def _bedrock_tools_pt(tools: List) -> List[BedrockToolBlock]:
|
|||
for _, value in defs_copy.items():
|
||||
unpack_defs(value, defs_copy)
|
||||
unpack_defs(parameters, defs_copy)
|
||||
tool_input_schema = BedrockToolInputSchemaBlock(json=parameters)
|
||||
tool_input_schema = BedrockToolInputSchemaBlock(
|
||||
json=BedrockToolJsonSchemaBlock(
|
||||
type=parameters.get("type", ""),
|
||||
properties=parameters.get("properties", {}),
|
||||
required=parameters.get("required", []),
|
||||
)
|
||||
)
|
||||
tool_spec = BedrockToolSpecBlock(
|
||||
inputSchema=tool_input_schema, name=name, description=description
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue