(fix) remove bloat - rate limite manager

This commit is contained in:
ishaan-jaff 2023-10-27 17:47:45 -07:00
parent bdc96d6390
commit ad2afae31d

View file

@ -4286,437 +4286,4 @@ def get_valid_models():
valid_models.extend(models_for_provider)
return valid_models
except:
return [] # NON-Blocking
############################# BATCH COMPLETION with Rate Limit Throttling #######################
@dataclass
class StatusTracker:
"""Stores metadata about the script's progress. Only one instance is created."""
num_tasks_started: int = 0
num_tasks_in_progress: int = 0 # script ends when this reaches 0
num_tasks_succeeded: int = 0
num_tasks_failed: int = 0
num_rate_limit_errors: int = 0
num_api_errors: int = 0 # excluding rate limit errors, counted above
num_other_errors: int = 0
time_of_last_rate_limit_error: int = 0 # used to cool off after hitting rate limits
@dataclass
class APIRequest:
"""Stores an API request's inputs, outputs, and other metadata. Contains a method to make an API call."""
task_id: int
request_json: dict
token_consumption: int
attempts_left: int
metadata: dict
result: list = field(default_factory=list)
async def call_api(
self,
request_header: dict,
retry_queue: asyncio.Queue,
status_tracker: StatusTracker,
save_filepath: str = "",
):
"""Calls the OpenAI API and saves results."""
logging.info(f"Making API Call for request #{self.task_id} {self.request_json}")
error = None
try:
response = await litellm.acompletion(
**self.request_json
)
logging.info(f"Completed request #{self.task_id}")
if save_filepath == "": # return respons
return response
# else this gets written to save_filepath
except Exception as e:
logging.warning(
f"Request {self.task_id} failed with error {e}"
)
status_tracker.num_api_errors += 1
error = e
print(f"got exception {e}")
if "Rate limit" in str(e):
status_tracker.time_of_last_rate_limit_error = int(time.time())
status_tracker.num_rate_limit_errors += 1
status_tracker.num_api_errors -= (
1 # rate limit errors are counted separately
)
if error:
self.result.append(error)
if self.attempts_left:
retry_queue.put_nowait(self)
else:
logging.error(
f"Request {self.request_json} failed after all attempts. Saving errors: {self.result}"
)
data = (
[self.request_json, [str(e) for e in self.result], self.metadata]
if self.metadata
else [self.request_json, [str(e) for e in self.result]]
)
self.append_to_jsonl(data, save_filepath)
status_tracker.num_tasks_in_progress -= 1
status_tracker.num_tasks_failed += 1
else:
data = (
[self.request_json, response, self.metadata]
if self.metadata
else [self.request_json, response]
)
self.append_to_jsonl(data, save_filepath)
status_tracker.num_tasks_in_progress -= 1
status_tracker.num_tasks_succeeded += 1
logging.debug(f"Request {self.task_id} saved to {save_filepath}")
def append_to_jsonl(self, data, filename: str) -> None:
"""Append a json payload to the end of a jsonl file."""
json_string = json.dumps(data)
with open(filename, "a") as f:
f.write(json_string + "\n")
class RateLimitManager():
import uuid
def __init__(self, max_tokens_per_minute, max_requests_per_minute):
self.max_tokens_per_minute = max_tokens_per_minute
self.max_requests_per_minute = max_requests_per_minute
# print("init rate limit handler")
self.status_tracker = StatusTracker()
self.last_update_time = time.time()
self.available_request_capacity = max_requests_per_minute
self.available_token_capacity = max_tokens_per_minute
self.queue_of_requests_to_retry = asyncio.Queue() # type: ignore
self.task = 0 # for tracking ids for tasks
self.cooldown_time = 10 # time to cooldown between retries in seconds
async def acompletion(self, max_attempts=5, **kwargs):
# Initialize logging
logging.basicConfig(level=logging.INFO)
# Initialize request
logging.info(f"Initializing API request for request id:{self.task}")
request = APIRequest(
task_id=self.task,
request_json=kwargs,
token_consumption=self.num_tokens_consumed_from_request(request_json=kwargs, token_encoding_name="cl100k_base"),
attempts_left=max_attempts,
metadata=kwargs.pop("metadata", None),
)
self.task+=1 # added a new task to execute
# Check and update current capacity for model
current_time = time.time()
seconds_since_update = current_time - self.last_update_time
self.available_request_capacity = min(
self.available_request_capacity + self.max_requests_per_minute * seconds_since_update / 60.0,
self.max_requests_per_minute,
)
self.available_token_capacity = min(
self.available_token_capacity + self.max_tokens_per_minute * seconds_since_update / 60.0,
self.max_tokens_per_minute,
)
self.last_update_time = current_time
request_tokens = request.token_consumption
logging.debug("Request tokens: " + str(request_tokens))
queue_of_requests_to_retry = asyncio.Queue()
if (self.available_request_capacity >= 1 and self.available_token_capacity >= request_tokens):
# Update counters
self.available_request_capacity -= 1
self.available_token_capacity -= request_tokens
request.attempts_left -= 1
# Call API and log final status
logging.info(f"""Running Request {request.task_id}, using tokens: {request.token_consumption}. Remaining available tokens: {self.available_token_capacity}""")
result = await request.call_api(
request_header={},
retry_queue=queue_of_requests_to_retry,
save_filepath="",
status_tracker=self.status_tracker,
)
return result
else:
logging.info(f"OVER CAPACITY for {request.task_id}. retrying {request.attempts_left} times")
while request.attempts_left >= 0:
# Sleep for a minute to allow for capacity
logging.info(f"OVER CAPACITY for {request.task_id}. Cooling down for 60 seconds, retrying {request.attempts_left} times")
await asyncio.sleep(self.cooldown_time)
# Check capacity
current_time = time.time()
seconds_since_update = current_time - self.last_update_time
self.available_request_capacity = min(
self.available_request_capacity + self.max_requests_per_minute * seconds_since_update / 60.0,
self.max_requests_per_minute,
)
self.available_token_capacity = min(
self.available_token_capacity + self.max_tokens_per_minute * seconds_since_update / 60.0,
self.max_tokens_per_minute,
)
self.last_update_time = current_time
request_tokens = request.token_consumption
if self.available_request_capacity >= 1 and self.available_token_capacity >= request_tokens:
logging.info("Available token capacity available.")
# Update counters
self.available_request_capacity -= 1
self.available_token_capacity -= request_tokens
request.attempts_left -= 1
# Call API and log final status
logging.info(f"""Running Request {request.task_id}, using tokens: {request.token_consumption}. Remaining available tokens: {self.available_token_capacity}""")
result = await request.call_api(
request_header={},
retry_queue=queue_of_requests_to_retry,
save_filepath="",
status_tracker=self.status_tracker,
)
return result
logging.warning(f"Request {request.task_id} is still over capacity. Number of retry attempts left: {request.attempts_left}")
request.attempts_left -=1
async def batch_completion(
self,
requests_filepath: str = "",
jobs: list = [],
save_filepath: Optional[str] = None,
api_key: Optional[str] = os.getenv("OPENAI_API_KEY"),
max_requests_per_minute: float = 3_000 * 0.5,
max_tokens_per_minute: float = 250_000 * 0.5,
token_encoding_name: str = "cl100k_base",
max_attempts: int = 5,
logging_level: int = logging.INFO,
):
if save_filepath == None:
save_filepath = "litellm_results.jsonl"
print("running batch completion")
# constants
seconds_to_pause_after_rate_limit_error = 15
seconds_to_sleep_each_loop = (
0.001 # 1 ms limits max throughput to 1,000 requests per second
)
# initialize logging
logging.basicConfig(level=logging_level)
logging.debug(f"Logging initialized at level {logging_level}")
# infer API endpoint and construct request header
request_header = {"Authorization": f"Bearer {api_key}"}
# initialize trackers
queue_of_requests_to_retry = asyncio.Queue() # type: ignore
task_id_generator = (
self.task_id_generator_function()
) # generates integer IDs of 1, 2, 3, ...
status_tracker = (
StatusTracker()
) # single instance to track a collection of variables
next_request = None # variable to hold the next request to call
# initialize available capacity counts
available_request_capacity = max_requests_per_minute
available_token_capacity = max_tokens_per_minute
last_update_time = time.time()
# initialize flags
file_not_finished = True # after file is empty, we'll skip reading it
logging.debug(f"Initialization complete.")
requests = iter(jobs)
while True:
# get next request (if one is not already waiting for capacity)
if next_request is None:
if not queue_of_requests_to_retry.empty():
next_request = queue_of_requests_to_retry.get_nowait()
logging.debug(
f"Retrying request {next_request.task_id}: {next_request}"
)
elif file_not_finished:
try:
# get new request
request_json = next(requests)
if "api_key" not in request_json:
request_json["api_key"] = api_key
# print("CREATING API REQUEST")
next_request = APIRequest(
task_id=next(task_id_generator),
request_json=request_json,
token_consumption=self.num_tokens_consumed_from_request(
request_json, token_encoding_name
),
attempts_left=max_attempts,
metadata=request_json.pop("metadata", None),
)
# print("AFTER INIT API REQUEST")
status_tracker.num_tasks_started += 1
status_tracker.num_tasks_in_progress += 1
logging.debug(
f"Reading request {next_request.task_id}: {next_request}"
)
except:
logging.debug("Jobs finished")
file_not_finished = False
# update available capacity
current_time = time.time()
seconds_since_update = current_time - last_update_time
available_request_capacity = min(
available_request_capacity
+ max_requests_per_minute * seconds_since_update / 60.0,
max_requests_per_minute,
)
available_token_capacity = min(
available_token_capacity
+ max_tokens_per_minute * seconds_since_update / 60.0,
max_tokens_per_minute,
)
last_update_time = current_time
# if enough capacity available, call API
if next_request:
next_request_tokens = next_request.token_consumption
if (
available_request_capacity >= 1
and available_token_capacity >= next_request_tokens
):
# update counters
available_request_capacity -= 1
available_token_capacity -= next_request_tokens
next_request.attempts_left -= 1
# call API
# after finishing, log final status
logging.info(
f"""Running Request {next_request.task_id}, using tokens: {next_request.token_consumption} remaining available tokens: {available_token_capacity}"""
)
next_request.task_id
asyncio.create_task(
next_request.call_api(
request_header=request_header,
retry_queue=queue_of_requests_to_retry,
save_filepath=save_filepath,
status_tracker=status_tracker,
)
)
next_request = None # reset next_request to empty
# if all tasks are finished, break
if status_tracker.num_tasks_in_progress == 0:
break
# main loop sleeps briefly so concurrent tasks can run
await asyncio.sleep(seconds_to_sleep_each_loop)
# if a rate limit error was hit recently, pause to cool down
seconds_since_rate_limit_error = (
time.time() - status_tracker.time_of_last_rate_limit_error
)
if (
seconds_since_rate_limit_error
< seconds_to_pause_after_rate_limit_error
):
remaining_seconds_to_pause = (
seconds_to_pause_after_rate_limit_error
- seconds_since_rate_limit_error
)
await asyncio.sleep(remaining_seconds_to_pause)
# ^e.g., if pause is 15 seconds and final limit was hit 5 seconds ago
logging.warn(
f"Pausing to cool down until {time.ctime(status_tracker.time_of_last_rate_limit_error + seconds_to_pause_after_rate_limit_error)}"
)
# after finishing, log final status
logging.info(
f"""Parallel processing complete. Results saved to {save_filepath}"""
)
if status_tracker.num_tasks_failed > 0:
logging.warning(
f"{status_tracker.num_tasks_failed} / {status_tracker.num_tasks_started} requests failed. Errors logged to {save_filepath}."
)
if status_tracker.num_rate_limit_errors > 0:
logging.warning(
f"{status_tracker.num_rate_limit_errors} rate limit errors received. Consider running at a lower rate."
)
# dataclasses
def num_tokens_consumed_from_request(
self,
request_json: dict,
token_encoding_name: str,
):
"""Count the number of tokens in the request. Only supports completion and embedding requests."""
encoding = tiktoken.get_encoding(token_encoding_name)
# if completions request, tokens = prompt + n * max_tokens
max_tokens = request_json.get("max_tokens", 15)
n = request_json.get("n", 1)
completion_tokens = n * max_tokens
num_tokens = 0
for message in request_json["messages"]:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens -= 1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens + completion_tokens
def task_id_generator_function(self):
"""Generate integers 0, 1, 2, and so on."""
task_id = 0
while True:
yield task_id
task_id += 1
###### USAGE ################
# jobs = [
# {"model": "gpt-4", "messages": [{"content": "Please provide a summary of the latest scientific discoveries."*500, "role": "user"}]},
# {"model": "gpt-4", "messages": [{"content": "Please provide a summary of the latest scientific discoveries."*800, "role": "user"}]},
# {"model": "gpt-4", "messages": [{"content": "Please provide a summary of the latest scientific discoveries."*900, "role": "user"}]},
# {"model": "gpt-4", "messages": [{"content": "Please provide a summary of the latest scientific discoveries."*900, "role": "user"}]},
# {"model": "gpt-4", "messages": [{"content": "Please provide a summary of the latest scientific discoveries."*900, "role": "user"}]}
# ]
# asyncio.run(
# batch_completion_rate_limits(
# jobs = jobs,
# api_key="",
# max_requests_per_minute=60,
# max_tokens_per_minute=40000
# )
# )
return [] # NON-Blocking