mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
add custom guardrail reference
This commit is contained in:
parent
e62d0c7922
commit
af92cff44d
4 changed files with 342 additions and 39 deletions
115
litellm/proxy/custom_guardrail.py
Normal file
115
litellm/proxy/custom_guardrail.py
Normal file
|
@ -0,0 +1,115 @@
|
|||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
import traceback
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.caching import DualCache
|
||||
from litellm.integrations.custom_guardrail import CustomGuardrail
|
||||
from litellm.proxy._types import UserAPIKeyAuth
|
||||
from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata
|
||||
from litellm.types.guardrails import GuardrailEventHooks
|
||||
|
||||
|
||||
class myCustomGuardrail(CustomGuardrail):
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
):
|
||||
# store kwargs as optional_params
|
||||
self.optional_params = kwargs
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def async_pre_call_hook(
|
||||
self,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
cache: DualCache,
|
||||
data: dict,
|
||||
call_type: Literal[
|
||||
"completion",
|
||||
"text_completion",
|
||||
"embeddings",
|
||||
"image_generation",
|
||||
"moderation",
|
||||
"audio_transcription",
|
||||
"pass_through_endpoint",
|
||||
],
|
||||
) -> Optional[Union[Exception, str, dict]]:
|
||||
# In this guardrail, if a user inputs `litellm` we will mask it.
|
||||
_messages = data.get("messages")
|
||||
if _messages:
|
||||
for message in _messages:
|
||||
_content = message.get("content")
|
||||
if isinstance(_content, str):
|
||||
if "litellm" in _content.lower():
|
||||
_content = _content.replace("litellm", "********")
|
||||
message["content"] = _content
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"async_pre_call_hook: Message after masking %s", _messages
|
||||
)
|
||||
|
||||
return data
|
||||
|
||||
async def async_moderation_hook(
|
||||
self,
|
||||
data: dict,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
call_type: Literal["completion", "embeddings", "image_generation"],
|
||||
):
|
||||
"""
|
||||
Runs in parallel to LLM API call
|
||||
Runs on only Input
|
||||
"""
|
||||
|
||||
# this works the same as async_pre_call_hook, but just runs in parallel as the LLM API Call
|
||||
# In this guardrail, if a user inputs `litellm` we will mask it.
|
||||
_messages = data.get("messages")
|
||||
if _messages:
|
||||
for message in _messages:
|
||||
_content = message.get("content")
|
||||
if isinstance(_content, str):
|
||||
if "litellm" in _content.lower():
|
||||
_content = _content.replace("litellm", "********")
|
||||
message["content"] = _content
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"async_pre_call_hook: Message after masking %s", _messages
|
||||
)
|
||||
pass
|
||||
|
||||
async def async_post_call_success_hook(
|
||||
self,
|
||||
data: dict,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
response,
|
||||
):
|
||||
"""
|
||||
Runs on response from LLM API call
|
||||
|
||||
If a response contains the word "coffee" -> we will raise an exception
|
||||
"""
|
||||
verbose_proxy_logger.debug("async_pre_call_hook response: %s", response)
|
||||
if isinstance(response, litellm.ModelResponse):
|
||||
for choice in response.choices:
|
||||
if isinstance(choice, litellm.Choices):
|
||||
verbose_proxy_logger.debug("async_pre_call_hook choice: %s", choice)
|
||||
if (
|
||||
choice.message.content
|
||||
and isinstance(choice.message.content, str)
|
||||
and "coffee" in choice.message.content
|
||||
):
|
||||
raise ValueError("Guardrail failed Coffee Detected")
|
115
litellm/proxy/guardrails/guardrail_hooks/custom_guardrail.py
Normal file
115
litellm/proxy/guardrails/guardrail_hooks/custom_guardrail.py
Normal file
|
@ -0,0 +1,115 @@
|
|||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
import traceback
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
|
||||
from fastapi import HTTPException
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.caching import DualCache
|
||||
from litellm.integrations.custom_guardrail import CustomGuardrail
|
||||
from litellm.proxy._types import UserAPIKeyAuth
|
||||
from litellm.proxy.guardrails.guardrail_helpers import should_proceed_based_on_metadata
|
||||
from litellm.types.guardrails import GuardrailEventHooks
|
||||
|
||||
|
||||
class myCustomGuardrail(CustomGuardrail):
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
):
|
||||
# store kwargs as optional_params
|
||||
self.optional_params = kwargs
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def async_pre_call_hook(
|
||||
self,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
cache: DualCache,
|
||||
data: dict,
|
||||
call_type: Literal[
|
||||
"completion",
|
||||
"text_completion",
|
||||
"embeddings",
|
||||
"image_generation",
|
||||
"moderation",
|
||||
"audio_transcription",
|
||||
"pass_through_endpoint",
|
||||
],
|
||||
) -> Optional[Union[Exception, str, dict]]:
|
||||
# In this guardrail, if a user inputs `litellm` we will mask it.
|
||||
_messages = data.get("messages")
|
||||
if _messages:
|
||||
for message in _messages:
|
||||
_content = message.get("content")
|
||||
if isinstance(_content, str):
|
||||
if "litellm" in _content.lower():
|
||||
_content = _content.replace("litellm", "********")
|
||||
message["content"] = _content
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"async_pre_call_hook: Message after masking %s", _messages
|
||||
)
|
||||
|
||||
return data
|
||||
|
||||
async def async_moderation_hook(
|
||||
self,
|
||||
data: dict,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
call_type: Literal["completion", "embeddings", "image_generation"],
|
||||
):
|
||||
"""
|
||||
Runs in parallel to LLM API call
|
||||
Runs on only Input
|
||||
"""
|
||||
|
||||
# this works the same as async_pre_call_hook, but just runs in parallel as the LLM API Call
|
||||
# In this guardrail, if a user inputs `litellm` we will mask it.
|
||||
_messages = data.get("messages")
|
||||
if _messages:
|
||||
for message in _messages:
|
||||
_content = message.get("content")
|
||||
if isinstance(_content, str):
|
||||
if "litellm" in _content.lower():
|
||||
_content = _content.replace("litellm", "********")
|
||||
message["content"] = _content
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"async_pre_call_hook: Message after masking %s", _messages
|
||||
)
|
||||
pass
|
||||
|
||||
async def async_post_call_success_hook(
|
||||
self,
|
||||
data: dict,
|
||||
user_api_key_dict: UserAPIKeyAuth,
|
||||
response,
|
||||
):
|
||||
"""
|
||||
Runs on response from LLM API call
|
||||
|
||||
If a response contains the word "coffee" -> we will raise an exception
|
||||
"""
|
||||
verbose_proxy_logger.debug("async_pre_call_hook response: %s", response)
|
||||
if isinstance(response, litellm.ModelResponse):
|
||||
for choice in response.choices:
|
||||
if isinstance(choice, litellm.Choices):
|
||||
verbose_proxy_logger.debug("async_pre_call_hook choice: %s", choice)
|
||||
if (
|
||||
choice.message.content
|
||||
and isinstance(choice.message.content, str)
|
||||
and "coffee" in choice.message.content
|
||||
):
|
||||
raise ValueError("Guardrail failed Coffee Detected")
|
|
@ -1,17 +1,19 @@
|
|||
model_list:
|
||||
- model_name: fake-openai-endpoint
|
||||
- model_name: gpt-4
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
tenant_id: os.environ/AZURE_TENANT_ID
|
||||
client_id: os.environ/AZURE_CLIENT_ID
|
||||
client_secret: os.environ/AZURE_CLIENT_SECRET
|
||||
model: openai/gpt-4o
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
|
||||
guardrails:
|
||||
- guardrail_name: "bedrock-pre-guard"
|
||||
- guardrail_name: "custom-pre-guard"
|
||||
litellm_params:
|
||||
guardrail: bedrock # supported values: "aporia", "bedrock", "lakera"
|
||||
guardrail: custom_guardrail.myCustomGuardrail
|
||||
mode: "pre_call"
|
||||
- guardrail_name: "custom-during-guard"
|
||||
litellm_params:
|
||||
guardrail: custom_guardrail.myCustomGuardrail
|
||||
mode: "during_call"
|
||||
- guardrail_name: "custom-post-guard"
|
||||
litellm_params:
|
||||
guardrail: custom_guardrail.myCustomGuardrail
|
||||
mode: "post_call"
|
||||
guardrailIdentifier: ff6ujrregl1q
|
||||
guardrailVersion: "DRAFT"
|
|
@ -30,6 +30,7 @@ from litellm._logging import verbose_proxy_logger
|
|||
from litellm._service_logger import ServiceLogging, ServiceTypes
|
||||
from litellm.caching import DualCache, RedisCache
|
||||
from litellm.exceptions import RejectedRequestError
|
||||
from litellm.integrations.custom_guardrail import CustomGuardrail
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.integrations.slack_alerting import SlackAlerting
|
||||
from litellm.litellm_core_utils.core_helpers import (
|
||||
|
@ -344,6 +345,23 @@ class ProxyLogging:
|
|||
ttl=alerting_threshold,
|
||||
)
|
||||
|
||||
async def process_pre_call_hook_response(self, response, data, call_type):
|
||||
if isinstance(response, Exception):
|
||||
raise response
|
||||
if isinstance(response, dict):
|
||||
return response
|
||||
if isinstance(response, str):
|
||||
if call_type in ["completion", "text_completion"]:
|
||||
raise RejectedRequestError(
|
||||
message=response,
|
||||
model=data.get("model", ""),
|
||||
llm_provider="",
|
||||
request_data=data,
|
||||
)
|
||||
else:
|
||||
raise HTTPException(status_code=400, detail={"error": response})
|
||||
return data
|
||||
|
||||
# The actual implementation of the function
|
||||
async def pre_call_hook(
|
||||
self,
|
||||
|
@ -382,7 +400,33 @@ class ProxyLogging:
|
|||
)
|
||||
else:
|
||||
_callback = callback # type: ignore
|
||||
|
||||
if (
|
||||
_callback is not None
|
||||
and isinstance(_callback, CustomGuardrail)
|
||||
and "pre_call_hook" in vars(_callback.__class__)
|
||||
):
|
||||
from litellm.types.guardrails import GuardrailEventHooks
|
||||
|
||||
if (
|
||||
_callback.should_run_guardrail(
|
||||
data=data, event_type=GuardrailEventHooks.pre_call
|
||||
)
|
||||
is not True
|
||||
):
|
||||
continue
|
||||
response = await _callback.async_pre_call_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
cache=self.call_details["user_api_key_cache"],
|
||||
data=data,
|
||||
call_type=call_type,
|
||||
)
|
||||
if response is not None:
|
||||
data = await self.process_pre_call_hook_response(
|
||||
response=response, data=data, call_type=call_type
|
||||
)
|
||||
|
||||
elif (
|
||||
_callback is not None
|
||||
and isinstance(_callback, CustomLogger)
|
||||
and "async_pre_call_hook" in vars(_callback.__class__)
|
||||
|
@ -394,25 +438,9 @@ class ProxyLogging:
|
|||
call_type=call_type,
|
||||
)
|
||||
if response is not None:
|
||||
if isinstance(response, Exception):
|
||||
raise response
|
||||
elif isinstance(response, dict):
|
||||
data = response
|
||||
elif isinstance(response, str):
|
||||
if (
|
||||
call_type == "completion"
|
||||
or call_type == "text_completion"
|
||||
):
|
||||
raise RejectedRequestError(
|
||||
message=response,
|
||||
model=data.get("model", ""),
|
||||
llm_provider="",
|
||||
request_data=data,
|
||||
)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400, detail={"error": response}
|
||||
)
|
||||
data = await self.process_pre_call_hook_response(
|
||||
response=response, data=data, call_type=call_type
|
||||
)
|
||||
|
||||
return data
|
||||
except Exception as e:
|
||||
|
@ -431,11 +459,30 @@ class ProxyLogging:
|
|||
],
|
||||
):
|
||||
"""
|
||||
Runs the CustomLogger's async_moderation_hook()
|
||||
Runs the CustomGuardrail's async_moderation_hook()
|
||||
"""
|
||||
for callback in litellm.callbacks:
|
||||
try:
|
||||
if isinstance(callback, CustomLogger):
|
||||
if isinstance(callback, CustomGuardrail):
|
||||
################################################################
|
||||
# Check if guardrail should be run for GuardrailEventHooks.during_call hook
|
||||
################################################################
|
||||
|
||||
# V1 implementation - backwards compatibility
|
||||
if callback.event_hook is None:
|
||||
if callback.moderation_check == "pre_call":
|
||||
return
|
||||
else:
|
||||
# Main - V2 Guardrails implementation
|
||||
from litellm.types.guardrails import GuardrailEventHooks
|
||||
|
||||
if (
|
||||
callback.should_run_guardrail(
|
||||
data=data, event_type=GuardrailEventHooks.during_call
|
||||
)
|
||||
is not True
|
||||
):
|
||||
continue
|
||||
await callback.async_moderation_hook(
|
||||
data=data,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
|
@ -737,12 +784,36 @@ class ProxyLogging:
|
|||
)
|
||||
else:
|
||||
_callback = callback # type: ignore
|
||||
if _callback is not None and isinstance(_callback, CustomLogger):
|
||||
await _callback.async_post_call_success_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
data=data,
|
||||
response=response,
|
||||
)
|
||||
|
||||
if _callback is not None:
|
||||
############## Handle Guardrails ########################################
|
||||
#############################################################################
|
||||
if isinstance(callback, CustomGuardrail):
|
||||
# Main - V2 Guardrails implementation
|
||||
from litellm.types.guardrails import GuardrailEventHooks
|
||||
|
||||
if (
|
||||
callback.should_run_guardrail(
|
||||
data=data, event_type=GuardrailEventHooks.post_call
|
||||
)
|
||||
is not True
|
||||
):
|
||||
continue
|
||||
|
||||
await callback.async_post_call_success_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
data=data,
|
||||
response=response,
|
||||
)
|
||||
|
||||
############ Handle CustomLogger ###############################
|
||||
#################################################################
|
||||
elif isinstance(_callback, CustomLogger):
|
||||
await _callback.async_post_call_success_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
data=data,
|
||||
response=response,
|
||||
)
|
||||
except Exception as e:
|
||||
raise e
|
||||
return response
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue