mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
fix(openai.py): return logprobs for text completion calls
This commit is contained in:
parent
80f8645e1a
commit
b07788d2a5
6 changed files with 50459 additions and 82 deletions
|
@ -8,6 +8,7 @@ from litellm.utils import (
|
|||
CustomStreamWrapper,
|
||||
convert_to_model_response_object,
|
||||
TranscriptionResponse,
|
||||
TextCompletionResponse,
|
||||
)
|
||||
from typing import Callable, Optional, BinaryIO
|
||||
from litellm import OpenAIConfig
|
||||
|
@ -15,11 +16,11 @@ import litellm, json
|
|||
import httpx
|
||||
from .custom_httpx.azure_dall_e_2 import CustomHTTPTransport, AsyncCustomHTTPTransport
|
||||
from openai import AzureOpenAI, AsyncAzureOpenAI
|
||||
from ..llms.openai import OpenAITextCompletion
|
||||
from ..llms.openai import OpenAITextCompletion, OpenAITextCompletionConfig
|
||||
import uuid
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
openai_text_completion = OpenAITextCompletion()
|
||||
openai_text_completion_config = OpenAITextCompletionConfig()
|
||||
|
||||
|
||||
class AzureOpenAIError(Exception):
|
||||
|
@ -300,10 +301,12 @@ class AzureTextCompletion(BaseLLM):
|
|||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
return openai_text_completion.convert_to_model_response_object(
|
||||
response_object=stringified_response,
|
||||
return (
|
||||
openai_text_completion_config.convert_to_chat_model_response_object(
|
||||
response_object=TextCompletionResponse(**stringified_response),
|
||||
model_response_object=model_response,
|
||||
)
|
||||
)
|
||||
except AzureOpenAIError as e:
|
||||
exception_mapping_worked = True
|
||||
raise e
|
||||
|
@ -373,7 +376,7 @@ class AzureTextCompletion(BaseLLM):
|
|||
},
|
||||
)
|
||||
response = await azure_client.completions.create(**data, timeout=timeout)
|
||||
return openai_text_completion.convert_to_model_response_object(
|
||||
return openai_text_completion_config.convert_to_chat_model_response_object(
|
||||
response_object=response.model_dump(),
|
||||
model_response_object=model_response,
|
||||
)
|
||||
|
|
|
@ -10,6 +10,7 @@ from litellm.utils import (
|
|||
convert_to_model_response_object,
|
||||
Usage,
|
||||
TranscriptionResponse,
|
||||
TextCompletionResponse,
|
||||
)
|
||||
from typing import Callable, Optional
|
||||
import aiohttp, requests
|
||||
|
@ -200,6 +201,43 @@ class OpenAITextCompletionConfig:
|
|||
and v is not None
|
||||
}
|
||||
|
||||
def convert_to_chat_model_response_object(
|
||||
self,
|
||||
response_object: Optional[TextCompletionResponse] = None,
|
||||
model_response_object: Optional[ModelResponse] = None,
|
||||
):
|
||||
try:
|
||||
## RESPONSE OBJECT
|
||||
if response_object is None or model_response_object is None:
|
||||
raise ValueError("Error in response object format")
|
||||
choice_list = []
|
||||
for idx, choice in enumerate(response_object["choices"]):
|
||||
message = Message(
|
||||
content=choice["text"],
|
||||
role="assistant",
|
||||
)
|
||||
choice = Choices(
|
||||
finish_reason=choice["finish_reason"], index=idx, message=message
|
||||
)
|
||||
choice_list.append(choice)
|
||||
model_response_object.choices = choice_list
|
||||
|
||||
if "usage" in response_object:
|
||||
model_response_object.usage = response_object["usage"]
|
||||
|
||||
if "id" in response_object:
|
||||
model_response_object.id = response_object["id"]
|
||||
|
||||
if "model" in response_object:
|
||||
model_response_object.model = response_object["model"]
|
||||
|
||||
model_response_object._hidden_params["original_response"] = (
|
||||
response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
|
||||
)
|
||||
return model_response_object
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
class OpenAIChatCompletion(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
|
@ -962,40 +1000,6 @@ class OpenAITextCompletion(BaseLLM):
|
|||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def convert_to_model_response_object(
|
||||
self,
|
||||
response_object: Optional[dict] = None,
|
||||
model_response_object: Optional[ModelResponse] = None,
|
||||
):
|
||||
try:
|
||||
## RESPONSE OBJECT
|
||||
if response_object is None or model_response_object is None:
|
||||
raise ValueError("Error in response object format")
|
||||
choice_list = []
|
||||
for idx, choice in enumerate(response_object["choices"]):
|
||||
message = Message(content=choice["text"], role="assistant")
|
||||
choice = Choices(
|
||||
finish_reason=choice["finish_reason"], index=idx, message=message
|
||||
)
|
||||
choice_list.append(choice)
|
||||
model_response_object.choices = choice_list
|
||||
|
||||
if "usage" in response_object:
|
||||
model_response_object.usage = response_object["usage"]
|
||||
|
||||
if "id" in response_object:
|
||||
model_response_object.id = response_object["id"]
|
||||
|
||||
if "model" in response_object:
|
||||
model_response_object.model = response_object["model"]
|
||||
|
||||
model_response_object._hidden_params["original_response"] = (
|
||||
response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
|
||||
)
|
||||
return model_response_object
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model_response: ModelResponse,
|
||||
|
@ -1077,6 +1081,8 @@ class OpenAITextCompletion(BaseLLM):
|
|||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
|
||||
response_json = response.json()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
|
@ -1089,10 +1095,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return self.convert_to_model_response_object(
|
||||
response_object=response.json(),
|
||||
model_response_object=model_response,
|
||||
)
|
||||
return TextCompletionResponse(**response_json)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
@ -1108,6 +1111,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
model: str,
|
||||
timeout: float,
|
||||
):
|
||||
|
||||
async with httpx.AsyncClient(timeout=timeout) as client:
|
||||
try:
|
||||
response = await client.post(
|
||||
|
@ -1134,9 +1138,7 @@ class OpenAITextCompletion(BaseLLM):
|
|||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return self.convert_to_model_response_object(
|
||||
response_object=response_json, model_response_object=model_response
|
||||
)
|
||||
return TextCompletionResponse(**response_json)
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
|
50280
litellm/llms/tokenizers/ec7223a39ce59f226a68acc30dc1af2788490e15
Normal file
50280
litellm/llms/tokenizers/ec7223a39ce59f226a68acc30dc1af2788490e15
Normal file
File diff suppressed because it is too large
Load diff
|
@ -520,6 +520,9 @@ def completion(
|
|||
eos_token = kwargs.get("eos_token", None)
|
||||
preset_cache_key = kwargs.get("preset_cache_key", None)
|
||||
hf_model_name = kwargs.get("hf_model_name", None)
|
||||
### TEXT COMPLETION CALLS ###
|
||||
text_completion = kwargs.get("text_completion", False)
|
||||
atext_completion = kwargs.get("atext_completion", False)
|
||||
### ASYNC CALLS ###
|
||||
acompletion = kwargs.get("acompletion", False)
|
||||
client = kwargs.get("client", None)
|
||||
|
@ -561,6 +564,8 @@ def completion(
|
|||
litellm_params = [
|
||||
"metadata",
|
||||
"acompletion",
|
||||
"atext_completion",
|
||||
"text_completion",
|
||||
"caching",
|
||||
"mock_response",
|
||||
"api_key",
|
||||
|
@ -1043,8 +1048,9 @@ def completion(
|
|||
prompt = messages[0]["content"]
|
||||
else:
|
||||
prompt = " ".join([message["content"] for message in messages]) # type: ignore
|
||||
|
||||
## COMPLETION CALL
|
||||
model_response = openai_text_completions.completion(
|
||||
_response = openai_text_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
|
@ -1059,15 +1065,25 @@ def completion(
|
|||
timeout=timeout,
|
||||
)
|
||||
|
||||
if (
|
||||
optional_params.get("stream", False) == False
|
||||
and acompletion == False
|
||||
and text_completion == False
|
||||
):
|
||||
# convert to chat completion response
|
||||
_response = litellm.OpenAITextCompletionConfig().convert_to_chat_model_response_object(
|
||||
response_object=_response, model_response_object=model_response
|
||||
)
|
||||
|
||||
if optional_params.get("stream", False) or acompletion == True:
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=model_response,
|
||||
original_response=_response,
|
||||
additional_args={"headers": headers},
|
||||
)
|
||||
response = model_response
|
||||
response = _response
|
||||
elif (
|
||||
"replicate" in model
|
||||
or custom_llm_provider == "replicate"
|
||||
|
@ -2960,6 +2976,11 @@ async def atext_completion(*args, **kwargs):
|
|||
transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
|
||||
except Exception as e:
|
||||
print_verbose(f"LiteLLM non blocking exception: {e}")
|
||||
|
||||
## TRANSLATE CHAT TO TEXT FORMAT ##
|
||||
if isinstance(response, TextCompletionResponse):
|
||||
return response
|
||||
|
||||
text_completion_response = TextCompletionResponse()
|
||||
text_completion_response["id"] = response.get("id", None)
|
||||
text_completion_response["object"] = "text_completion"
|
||||
|
@ -3156,7 +3177,7 @@ def text_completion(
|
|||
concurrent.futures.as_completed(futures)
|
||||
):
|
||||
responses[i] = future.result()
|
||||
text_completion_response.choices = responses
|
||||
text_completion_response.choices = responses # type: ignore
|
||||
|
||||
return text_completion_response
|
||||
# else:
|
||||
|
@ -3193,6 +3214,7 @@ def text_completion(
|
|||
)
|
||||
|
||||
kwargs.pop("prompt", None)
|
||||
kwargs["text_completion"] = True
|
||||
response = completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
|
@ -3213,6 +3235,9 @@ def text_completion(
|
|||
except Exception as e:
|
||||
print_verbose(f"LiteLLM non blocking exception: {e}")
|
||||
|
||||
if isinstance(response, TextCompletionResponse):
|
||||
return response
|
||||
|
||||
text_completion_response["id"] = response.get("id", None)
|
||||
text_completion_response["object"] = "text_completion"
|
||||
text_completion_response["created"] = response.get("created", None)
|
||||
|
|
|
@ -16,7 +16,9 @@ from litellm import (
|
|||
text_completion,
|
||||
completion_cost,
|
||||
atext_completion,
|
||||
TextCompletionResponse,
|
||||
)
|
||||
from litellm.utils import Logprobs
|
||||
from litellm import RateLimitError
|
||||
|
||||
litellm.num_retries = 3
|
||||
|
@ -2963,3 +2965,21 @@ async def test_async_text_completion_chat_model_stream():
|
|||
|
||||
|
||||
# asyncio.run(test_async_text_completion_chat_model_stream())
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_text_completion_openai_logprobs():
|
||||
response: TextCompletionResponse = await atext_completion(
|
||||
model="gpt-3.5-turbo-instruct",
|
||||
prompt=["Hey, how's it going?"],
|
||||
max_tokens=1,
|
||||
temperature=0.0,
|
||||
n=1,
|
||||
stop=["####"],
|
||||
logprobs=5,
|
||||
)
|
||||
print(f"response: {response}")
|
||||
|
||||
assert response.choices[0].logprobs is not None
|
||||
assert isinstance(response.choices[0].logprobs, Logprobs)
|
||||
|
||||
|
||||
# asyncio.run(test_async_text_completion_openai_logprobs())
|
||||
|
|
|
@ -652,6 +652,13 @@ class EmbeddingResponse(OpenAIObject):
|
|||
return self.dict()
|
||||
|
||||
|
||||
class Logprobs(OpenAIObject):
|
||||
text_offset: List[int]
|
||||
token_logprobs: List[float]
|
||||
tokens: List[str]
|
||||
top_logprobs: List[Dict[str, float]]
|
||||
|
||||
|
||||
class TextChoices(OpenAIObject):
|
||||
def __init__(self, finish_reason=None, index=0, text=None, logprobs=None, **params):
|
||||
super(TextChoices, self).__init__(**params)
|
||||
|
@ -664,8 +671,11 @@ class TextChoices(OpenAIObject):
|
|||
self.text = text
|
||||
else:
|
||||
self.text = None
|
||||
if logprobs:
|
||||
self.logprobs = []
|
||||
if logprobs is None:
|
||||
self.logprobs = None
|
||||
else:
|
||||
if isinstance(logprobs, dict):
|
||||
self.logprobs = Logprobs(**logprobs)
|
||||
else:
|
||||
self.logprobs = logprobs
|
||||
|
||||
|
@ -712,6 +722,15 @@ class TextCompletionResponse(OpenAIObject):
|
|||
}
|
||||
"""
|
||||
|
||||
id: str
|
||||
object: str
|
||||
created: int
|
||||
model: Optional[str]
|
||||
choices: List[TextChoices]
|
||||
usage: Optional[Usage]
|
||||
_response_ms: Optional[int] = None
|
||||
_hidden_params: Optional[dict] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
id=None,
|
||||
|
@ -721,32 +740,58 @@ class TextCompletionResponse(OpenAIObject):
|
|||
usage=None,
|
||||
stream=False,
|
||||
response_ms=None,
|
||||
object=None,
|
||||
**params,
|
||||
):
|
||||
super(TextCompletionResponse, self).__init__(**params)
|
||||
|
||||
if stream:
|
||||
self.object = "text_completion.chunk"
|
||||
self.choices = [TextChoices()]
|
||||
object = "text_completion.chunk"
|
||||
choices = [TextChoices()]
|
||||
else:
|
||||
self.object = "text_completion"
|
||||
self.choices = [TextChoices()]
|
||||
object = "text_completion"
|
||||
if choices is not None and isinstance(choices, list):
|
||||
new_choices = []
|
||||
for choice in choices:
|
||||
|
||||
if isinstance(choice, TextChoices):
|
||||
_new_choice = choice
|
||||
elif isinstance(choice, dict):
|
||||
_new_choice = TextChoices(**choice)
|
||||
new_choices.append(_new_choice)
|
||||
choices = new_choices
|
||||
else:
|
||||
choices = [TextChoices()]
|
||||
if object is not None:
|
||||
object = object
|
||||
if id is None:
|
||||
self.id = _generate_id()
|
||||
id = _generate_id()
|
||||
else:
|
||||
self.id = id
|
||||
id = id
|
||||
if created is None:
|
||||
self.created = int(time.time())
|
||||
created = int(time.time())
|
||||
else:
|
||||
self.created = created
|
||||
created = created
|
||||
|
||||
model = model
|
||||
if usage:
|
||||
usage = usage
|
||||
else:
|
||||
usage = Usage()
|
||||
|
||||
super(TextCompletionResponse, self).__init__(
|
||||
id=id,
|
||||
object=object,
|
||||
created=created,
|
||||
model=model,
|
||||
choices=choices,
|
||||
usage=usage,
|
||||
**params,
|
||||
)
|
||||
|
||||
if response_ms:
|
||||
self._response_ms = response_ms
|
||||
else:
|
||||
self._response_ms = None
|
||||
self.model = model
|
||||
if usage:
|
||||
self.usage = usage
|
||||
else:
|
||||
self.usage = Usage()
|
||||
self._hidden_params = (
|
||||
{}
|
||||
) # used in case users want to access the original model response
|
||||
|
@ -2513,6 +2558,7 @@ def client(original_function):
|
|||
if is_coroutine == True:
|
||||
pass
|
||||
else:
|
||||
if isinstance(original_response, ModelResponse):
|
||||
model_response = original_response["choices"][0]["message"][
|
||||
"content"
|
||||
]
|
||||
|
@ -7082,7 +7128,10 @@ def exception_type(
|
|||
or custom_llm_provider in litellm.openai_compatible_providers
|
||||
):
|
||||
# custom_llm_provider is openai, make it OpenAI
|
||||
if hasattr(original_exception, "message"):
|
||||
message = original_exception.message
|
||||
else:
|
||||
message = str(original_exception)
|
||||
if message is not None and isinstance(message, str):
|
||||
message = message.replace("OPENAI", custom_llm_provider.upper())
|
||||
message = message.replace("openai", custom_llm_provider)
|
||||
|
@ -7231,10 +7280,12 @@ def exception_type(
|
|||
else:
|
||||
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
|
||||
raise APIConnectionError(
|
||||
__cause__=original_exception.__cause__,
|
||||
message=f"{exception_provider} - {message}",
|
||||
llm_provider=custom_llm_provider,
|
||||
model=model,
|
||||
request=original_exception.request,
|
||||
request=httpx.Request(
|
||||
method="POST", url="https://api.openai.com/v1/"
|
||||
),
|
||||
)
|
||||
elif custom_llm_provider == "anthropic": # one of the anthropics
|
||||
if hasattr(original_exception, "message"):
|
||||
|
@ -8304,14 +8355,10 @@ def exception_type(
|
|||
else:
|
||||
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
|
||||
raise APIConnectionError(
|
||||
__cause__=original_exception.__cause__,
|
||||
message=f"{exception_provider} - {message}",
|
||||
llm_provider="azure",
|
||||
model=model,
|
||||
request=getattr(
|
||||
original_exception,
|
||||
"request",
|
||||
httpx.Request(method="POST", url="https://openai.com/"),
|
||||
),
|
||||
request=httpx.Request(method="POST", url="https://openai.com/"),
|
||||
)
|
||||
if (
|
||||
"BadRequestError.__init__() missing 1 required positional argument: 'param'"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue