mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
LiteLLM Minor Fixes & Improvements (11/19/2024) (#6820)
* fix(anthropic/chat/transformation.py): add json schema as values: json_schema fixes passing pydantic obj to anthropic Fixes https://github.com/BerriAI/litellm/issues/6766 * (feat): Add timestamp_granularities parameter to transcription API (#6457) * Add timestamp_granularities parameter to transcription API * add param to the local test * fix(databricks/chat.py): handle max_retries optional param handling for openai-like calls Fixes issue with calling finetuned vertex ai models via databricks route * build(ui/): add team admins via proxy ui * fix: fix linting error * test: fix test * docs(vertex.md): refactor docs * test: handle overloaded anthropic model error * test: remove duplicate test * test: fix test * test: update test to handle model overloaded error --------- Co-authored-by: Show <35062952+BrunooShow@users.noreply.github.com>
This commit is contained in:
parent
7d0e1f05ac
commit
b0be5bf3a1
15 changed files with 200 additions and 193 deletions
|
@ -42,11 +42,14 @@ class BaseLLMChatTest(ABC):
|
|||
"content": [{"type": "text", "text": "Hello, how are you?"}],
|
||||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
**base_completion_call_args,
|
||||
messages=messages,
|
||||
)
|
||||
assert response is not None
|
||||
try:
|
||||
response = litellm.completion(
|
||||
**base_completion_call_args,
|
||||
messages=messages,
|
||||
)
|
||||
assert response is not None
|
||||
except litellm.InternalServerError:
|
||||
pass
|
||||
|
||||
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
|
||||
assert response.choices[0].message.content is not None
|
||||
|
@ -89,6 +92,36 @@ class BaseLLMChatTest(ABC):
|
|||
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
|
||||
assert response.choices[0].message.content is not None
|
||||
|
||||
def test_json_response_pydantic_obj(self):
|
||||
from pydantic import BaseModel
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
||||
litellm.model_cost = litellm.get_model_cost_map(url="")
|
||||
|
||||
class TestModel(BaseModel):
|
||||
first_response: str
|
||||
|
||||
base_completion_call_args = self.get_base_completion_call_args()
|
||||
if not supports_response_schema(base_completion_call_args["model"], None):
|
||||
pytest.skip("Model does not support response schema")
|
||||
|
||||
try:
|
||||
res = litellm.completion(
|
||||
**base_completion_call_args,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the capital of France?",
|
||||
},
|
||||
],
|
||||
response_format=TestModel,
|
||||
)
|
||||
assert res is not None
|
||||
except litellm.InternalServerError:
|
||||
pytest.skip("Model is overloaded")
|
||||
|
||||
def test_json_response_format_stream(self):
|
||||
"""
|
||||
Test that the JSON response format with streaming is supported by the LLM API
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue