mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
refactor(proxy_server.py): using celery workers instead of rq for concurrency
This commit is contained in:
parent
8c98a2c899
commit
b16646e584
6 changed files with 84 additions and 32 deletions
|
@ -393,5 +393,4 @@ from .exceptions import (
|
|||
)
|
||||
from .budget_manager import BudgetManager
|
||||
from .proxy.proxy_cli import run_server
|
||||
from .router import Router
|
||||
from .proxy.proxy_server import litellm_queue_completion
|
||||
from .router import Router
|
|
@ -148,13 +148,6 @@ def print_verbose(print_statement):
|
|||
if user_debug:
|
||||
print(print_statement)
|
||||
|
||||
|
||||
def litellm_queue_completion(*args, **kwargs):
|
||||
call_type = kwargs.pop("call_type")
|
||||
llm_router: litellm.Router = kwargs.pop("llm_router")
|
||||
|
||||
return llm_router.completion(**kwargs)
|
||||
|
||||
def usage_telemetry(
|
||||
feature: str,
|
||||
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
|
||||
|
@ -228,14 +221,11 @@ def rq_setup(use_queue: bool):
|
|||
global request_queue, redis_connection, redis_job
|
||||
print(f"value of use_queue: {use_queue}")
|
||||
if use_queue:
|
||||
from redis import Redis
|
||||
from rq import Queue
|
||||
from rq.job import Job
|
||||
|
||||
redis_job = Job
|
||||
# start_rq_worker_in_background()
|
||||
redis_connection = Redis(host=os.getenv("REDIS_HOST"), port=os.getenv("REDIS_PORT"), password=os.getenv("REDIS_PASSWORD"))
|
||||
request_queue = Queue(connection=redis_connection)
|
||||
from litellm.proxy.queue.celery_app import celery_app, process_job
|
||||
from celery.result import AsyncResult
|
||||
request_queue = process_job
|
||||
redis_job = AsyncResult
|
||||
redis_connection = celery_app
|
||||
|
||||
def run_ollama_serve():
|
||||
command = ['ollama', 'serve']
|
||||
|
@ -597,7 +587,7 @@ async def generate_key_fn(request: Request):
|
|||
|
||||
@router.post("/queue/request", dependencies=[Depends(user_api_key_auth)])
|
||||
async def async_chat_completions(request: Request):
|
||||
global request_queue, llm_router
|
||||
global request_queue, llm_model_list
|
||||
body = await request.body()
|
||||
body_str = body.decode()
|
||||
try:
|
||||
|
@ -609,9 +599,9 @@ async def async_chat_completions(request: Request):
|
|||
or user_model # model name passed via cli args
|
||||
or data["model"] # default passed in http request
|
||||
)
|
||||
data["call_type"] = "chat_completion"
|
||||
data["llm_router"] = llm_router # this is dynamic - we should load the llm_router from the user_api_key_auth
|
||||
job = request_queue.enqueue(litellm.litellm_queue_completion, **data)
|
||||
data["llm_model_list"] = llm_model_list
|
||||
print(f"data: {data}")
|
||||
job = request_queue.apply_async(kwargs=data)
|
||||
return {"id": job.id, "url": f"/queue/response/{job.id}", "eta": 5, "status": "queued"}
|
||||
pass
|
||||
|
||||
|
@ -619,16 +609,11 @@ async def async_chat_completions(request: Request):
|
|||
async def async_chat_completions(request: Request, task_id: str):
|
||||
global redis_connection, redis_job
|
||||
try:
|
||||
job = redis_job.fetch(id=task_id, connection=redis_connection)
|
||||
result = job.result
|
||||
status = job.get_status()
|
||||
print(f"job status: {status}; job result: {result}")
|
||||
if status == "failed":
|
||||
print(f"job: {job.exc_info}")
|
||||
status = "queued"
|
||||
if result is not None:
|
||||
status = "finished"
|
||||
return {"status": status, "result": result}
|
||||
job = redis_job(task_id, app=redis_connection)
|
||||
if job.ready():
|
||||
return job.result
|
||||
else:
|
||||
return {'status': 'processing'}
|
||||
except Exception as e:
|
||||
return {"status": "finished", "result": str(e)}
|
||||
|
||||
|
|
39
litellm/proxy/queue/celery_app.py
Normal file
39
litellm/proxy/queue/celery_app.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
import json
|
||||
import redis
|
||||
from celery import Celery
|
||||
import time
|
||||
import sys, os
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../../..")
|
||||
) # Adds the parent directory to the system path - for litellm local dev
|
||||
import litellm
|
||||
|
||||
# Redis connection setup
|
||||
pool = redis.ConnectionPool(host=os.getenv("REDIS_HOST"), port=os.getenv("REDIS_PORT"), password=os.getenv("REDIS_PASSWORD"), db=0, max_connections=10)
|
||||
redis_client = redis.Redis(connection_pool=pool)
|
||||
|
||||
# Celery setup
|
||||
celery_app = Celery('tasks', broker=f"redis://default:{os.getenv('REDIS_PASSWORD')}@{os.getenv('REDIS_HOST')}:{os.getenv('REDIS_PORT')}", backend=f"redis://default:{os.getenv('REDIS_PASSWORD')}@{os.getenv('REDIS_HOST')}:{os.getenv('REDIS_PORT')}")
|
||||
celery_app.conf.update(
|
||||
broker_pool_limit = None,
|
||||
broker_transport_options = {'connection_pool': pool},
|
||||
result_backend_transport_options = {'connection_pool': pool},
|
||||
)
|
||||
|
||||
|
||||
# Celery task
|
||||
@celery_app.task(name='process_job')
|
||||
def process_job(*args, **kwargs):
|
||||
try:
|
||||
llm_router: litellm.Router = litellm.Router(model_list=kwargs.pop("llm_model_list"))
|
||||
response = llm_router.completion(*args, **kwargs)
|
||||
if isinstance(response, litellm.ModelResponse):
|
||||
response = response.model_dump_json()
|
||||
return json.loads(response)
|
||||
return str(response)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
raise e
|
||||
|
15
litellm/proxy/queue/celery_task.py
Normal file
15
litellm/proxy/queue/celery_task.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
import sys, os
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../../..")
|
||||
) # Adds the parent directory to the system path - for litellm local dev
|
||||
import litellm
|
||||
from litellm.proxy.queue.celery_app import celery_app
|
||||
|
||||
# Celery task
|
||||
@celery_app.task(name='process_job')
|
||||
def process_job(*args, **kwargs):
|
||||
llm_router: litellm.Router = litellm.Router(model_list=kwargs.pop("llm_model_list"))
|
||||
return llm_router.completion(*args, **kwargs)
|
9
litellm/proxy/queue/celery_worker.py
Normal file
9
litellm/proxy/queue/celery_worker.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
import os
|
||||
from multiprocessing import Process
|
||||
|
||||
def run_worker():
|
||||
os.system("celery worker -A your_project_name.celery_app --concurrency=10 --loglevel=info")
|
||||
|
||||
if __name__ == "__main__":
|
||||
worker_process = Process(target=run_worker)
|
||||
worker_process.start()
|
|
@ -18,4 +18,9 @@ def start_rq_worker():
|
|||
worker = Worker([queue], connection=redis_conn)
|
||||
except Exception as e:
|
||||
print(f"Error setting up worker: {e}")
|
||||
exit()
|
||||
exit()
|
||||
|
||||
with Connection(redis_conn):
|
||||
worker.work()
|
||||
|
||||
start_rq_worker()
|
Loading…
Add table
Add a link
Reference in a new issue