mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
add new litellm params for client_id, tenant_id etc
This commit is contained in:
parent
525d152d85
commit
b16752f0bc
5 changed files with 168 additions and 9 deletions
|
@ -1,3 +1,8 @@
|
|||
|
||||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Azure OpenAI
|
||||
## API Keys, Params
|
||||
api_key, api_base, api_version etc can be passed directly to `litellm.completion` - see here or set as `litellm.api_key` params see here
|
||||
|
@ -12,7 +17,7 @@ os.environ["AZURE_AD_TOKEN"] = ""
|
|||
os.environ["AZURE_API_TYPE"] = ""
|
||||
```
|
||||
|
||||
## Usage
|
||||
## **Usage - LiteLLM Python SDK**
|
||||
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/LiteLLM_Azure_OpenAI.ipynb">
|
||||
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
||||
</a>
|
||||
|
@ -64,6 +69,126 @@ response = litellm.completion(
|
|||
)
|
||||
```
|
||||
|
||||
|
||||
## **Usage - LiteLLM Proxy Server**
|
||||
|
||||
Here's how to call Azure OpenAI models with the LiteLLM Proxy Server
|
||||
|
||||
### 1. Save key in your environment
|
||||
|
||||
```bash
|
||||
export AZURE_API_KEY=""
|
||||
```
|
||||
|
||||
### 2. Start the proxy
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="config" label="config.yaml">
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
api_key: os.environ/AZURE_API_KEY # The `os.environ/` prefix tells litellm to read this from the env.
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="config-*" label="config.yaml - use tenant_id, client_id, client_secret">
|
||||
|
||||
This uses the `ClientSecretCredential`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
tenant_id: os.environ/AZURE_TENANT_ID
|
||||
client_id: os.environ/AZURE_CLIENT_ID
|
||||
client_secret: os.environ/AZURE_CLIENT_SECRET
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
### 3. Test it
|
||||
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:4000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
]
|
||||
}
|
||||
'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:4000"
|
||||
)
|
||||
|
||||
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
])
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="langchain" label="Langchain">
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import HumanMessage, SystemMessage
|
||||
|
||||
chat = ChatOpenAI(
|
||||
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
|
||||
model = "gpt-3.5-turbo",
|
||||
temperature=0.1
|
||||
)
|
||||
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content="You are a helpful assistant that im using to make a test request to."
|
||||
),
|
||||
HumanMessage(
|
||||
content="test from litellm. tell me why it's amazing in 1 sentence"
|
||||
),
|
||||
]
|
||||
response = chat(messages)
|
||||
|
||||
print(response)
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
|
||||
## Azure OpenAI Chat Completion Models
|
||||
|
||||
:::tip
|
||||
|
|
|
@ -3231,6 +3231,9 @@ def embedding(
|
|||
"cooldown_time",
|
||||
"tags",
|
||||
"azure_ad_token_provider",
|
||||
"tenant_id",
|
||||
"client_id",
|
||||
"client_secret",
|
||||
]
|
||||
default_params = openai_params + litellm_params
|
||||
non_default_params = {
|
||||
|
|
|
@ -4,8 +4,9 @@ model_list:
|
|||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
azure_ad_token_provider: True
|
||||
|
||||
tenant_id: os.environ/AZURE_TENANT_ID
|
||||
client_id: os.environ/AZURE_CLIENT_ID
|
||||
client_secret: os.environ/AZURE_CLIENT_SECRET
|
||||
|
||||
guardrails:
|
||||
- guardrail_name: "lakera-pre-guard"
|
||||
|
|
|
@ -173,10 +173,13 @@ def set_client(litellm_router_instance: LitellmRouter, model: dict):
|
|||
organization = litellm.get_secret(organization_env_name)
|
||||
litellm_params["organization"] = organization
|
||||
|
||||
azure_ad_token_provider = litellm_params.get("azure_ad_token_provider", None)
|
||||
if azure_ad_token_provider is not None:
|
||||
if litellm_params.get("tenant_id"):
|
||||
verbose_router_logger.debug("Using Azure AD Token Provider for Azure Auth")
|
||||
azure_ad_token_provider = get_azure_ad_token_from_entrata_id()
|
||||
azure_ad_token_provider = get_azure_ad_token_from_entrata_id(
|
||||
tenant_id=litellm_params.get("tenant_id"),
|
||||
client_id=litellm_params.get("client_id"),
|
||||
client_secret=litellm_params.get("client_secret"),
|
||||
)
|
||||
|
||||
if custom_llm_provider == "azure" or custom_llm_provider == "azure_text":
|
||||
if api_base is None or not isinstance(api_base, str):
|
||||
|
@ -507,13 +510,37 @@ def set_client(litellm_router_instance: LitellmRouter, model: dict):
|
|||
) # cache for 1 hr
|
||||
|
||||
|
||||
def get_azure_ad_token_from_entrata_id() -> Callable[[], str]:
|
||||
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
|
||||
def get_azure_ad_token_from_entrata_id(
|
||||
tenant_id: str, client_id: str, client_secret: str
|
||||
) -> Callable[[], str]:
|
||||
from azure.identity import (
|
||||
ClientSecretCredential,
|
||||
DefaultAzureCredential,
|
||||
get_bearer_token_provider,
|
||||
)
|
||||
|
||||
verbose_router_logger.debug("Getting Azure AD Token from Entrata ID")
|
||||
|
||||
if tenant_id.startswith("os.environ/"):
|
||||
tenant_id = litellm.get_secret(tenant_id)
|
||||
|
||||
if client_id.startswith("os.environ/"):
|
||||
client_id = litellm.get_secret(client_id)
|
||||
|
||||
if client_secret.startswith("os.environ/"):
|
||||
client_secret = litellm.get_secret(client_secret)
|
||||
verbose_router_logger.debug(
|
||||
"tenant_id %s, client_id %s, client_secret %s",
|
||||
tenant_id,
|
||||
client_id,
|
||||
client_secret,
|
||||
)
|
||||
credential = ClientSecretCredential(tenant_id, client_id, client_secret)
|
||||
|
||||
verbose_router_logger.debug("credential %s", credential)
|
||||
|
||||
token_provider = get_bearer_token_provider(
|
||||
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
|
||||
credential, "https://cognitiveservices.azure.com/.default"
|
||||
)
|
||||
|
||||
verbose_router_logger.debug("token_provider %s", token_provider)
|
||||
|
|
|
@ -1117,6 +1117,9 @@ all_litellm_params = [
|
|||
"cache_key",
|
||||
"max_retries",
|
||||
"azure_ad_token_provider",
|
||||
"tenant_id",
|
||||
"client_id",
|
||||
"client_secret",
|
||||
]
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue