mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
feat(router.py): add routing capabilities for multiple deployments
This commit is contained in:
parent
0aa3563ccf
commit
b20cf3171b
3 changed files with 251 additions and 0 deletions
199
litellm/router.py
Normal file
199
litellm/router.py
Normal file
|
@ -0,0 +1,199 @@
|
|||
from typing import Union, List, Dict, Optional
|
||||
from datetime import datetime
|
||||
import litellm
|
||||
|
||||
class Cache:
|
||||
"""
|
||||
Underlying dictionary for Router. This can either be a dictionary or a Redis Cache (if credentials are set).
|
||||
"""
|
||||
def __init__(self, cache_config: dict) -> None:
|
||||
self.cache_config = cache_config
|
||||
if cache_config["type"] == "redis":
|
||||
pass
|
||||
elif cache_config["type"] == "local":
|
||||
self.usage_dict = {}
|
||||
def get(self, key: str):
|
||||
return self.usage_dict.get(key, 0)
|
||||
|
||||
def increment(self, key: str, increment_value: int, expiry: int):
|
||||
if self.cache_config["type"] == "redis":
|
||||
pass
|
||||
elif self.cache_config["type"] == "local":
|
||||
self.usage_dict[key] = self.usage_dict.get(key, 0) + increment_value
|
||||
|
||||
class Router:
|
||||
"""
|
||||
Example usage:
|
||||
from litellm import Router
|
||||
model_list = [{
|
||||
"model_name": "gpt-3.5-turbo", # openai model name
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "azure/<your-deployment-name>",
|
||||
"api_key": <your-api-key>,
|
||||
"api_version": <your-api-version>,
|
||||
"api_base": <your-api-base>
|
||||
},
|
||||
"tpm": <your-model-tpm>, e.g. 240000
|
||||
"rpm": <your-model-rpm>, e.g. 1800
|
||||
}]
|
||||
|
||||
router = Router(model_list=model_list)
|
||||
"""
|
||||
def __init__(self,
|
||||
model_list: list,
|
||||
redis_host: Optional[str] = None,
|
||||
redis_port: Optional[int] = None,
|
||||
redis_password: Optional[str] = None) -> None:
|
||||
self.model_list = model_list
|
||||
if redis_host is not None and redis_port is not None and redis_password is not None:
|
||||
cache_config = {
|
||||
'type': 'redis',
|
||||
'host': redis_host,
|
||||
'port': redis_port,
|
||||
'password': redis_password
|
||||
}
|
||||
else:
|
||||
cache_config = {
|
||||
"type": "local"
|
||||
}
|
||||
self.cache = Cache(cache_config)
|
||||
litellm.cache = litellm.Cache(**cache_config)
|
||||
litellm.success_callback = [self.deployment_callback]
|
||||
|
||||
def completion(self,
|
||||
model: str,
|
||||
messages: List[Dict[str, str]],
|
||||
is_retry: Optional[bool] = False,
|
||||
is_fallback: Optional[bool] = False,
|
||||
is_async: Optional[bool] = False,
|
||||
**kwargs):
|
||||
"""
|
||||
Example usage:
|
||||
response = router.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}]
|
||||
"""
|
||||
|
||||
# pick the one that is available (lowest TPM/RPM)
|
||||
deployment = self.get_available_deployment(model=model, messages=messages)
|
||||
|
||||
data = deployment["litellm_params"]
|
||||
data["messages"] = messages
|
||||
# call via litellm.completion()
|
||||
return litellm.completion(**data)
|
||||
|
||||
def embedding(self,
|
||||
model: str,
|
||||
input: Union[str, List],
|
||||
is_async: Optional[bool] = False,
|
||||
**kwargs) -> Union[List[float], None]:
|
||||
# pick the one that is available (lowest TPM/RPM)
|
||||
deployment = self.get_available_deployment(model=model)
|
||||
|
||||
data = deployment["litellm_params"]
|
||||
data["input"] = input
|
||||
# call via litellm.embedding()
|
||||
return litellm.embedding(**data)
|
||||
|
||||
def deployment_callback(
|
||||
self,
|
||||
kwargs, # kwargs to completion
|
||||
completion_response, # response from completion
|
||||
start_time, end_time # start/end time
|
||||
):
|
||||
"""
|
||||
Function LiteLLM submits a callback to after a successful
|
||||
completion. Purpose of this is ti update TPM/RPM usage per model
|
||||
"""
|
||||
model_name = kwargs.get('model', None) # i.e. azure/gpt35turbo
|
||||
total_tokens = completion_response['usage']['total_tokens']
|
||||
self._set_deployment_usage(model_name, total_tokens)
|
||||
|
||||
def get_available_deployment(self,
|
||||
model: str,
|
||||
messages: List[Dict[str, str]]):
|
||||
"""
|
||||
Returns a deployment with the lowest TPM/RPM usage.
|
||||
"""
|
||||
# get list of potential deployments
|
||||
potential_deployments = []
|
||||
for item in self.model_list:
|
||||
if item["model_name"] == model:
|
||||
potential_deployments.append(item)
|
||||
|
||||
# set first model as current model
|
||||
deployment = potential_deployments[0]
|
||||
|
||||
|
||||
# get model tpm, rpm limits
|
||||
tpm = deployment["tpm"]
|
||||
rpm = deployment["rpm"]
|
||||
|
||||
# get deployment current usage
|
||||
current_tpm, current_rpm = self._get_deployment_usage(deployment_name=deployment["litellm_params"]["model"])
|
||||
|
||||
# get encoding
|
||||
token_count = litellm.token_counter(model=deployment["model_name"], messages=messages)
|
||||
|
||||
|
||||
# if at model limit, return lowest used
|
||||
if current_tpm + token_count > tpm or current_rpm + 1 >= rpm:
|
||||
# -----------------------
|
||||
# Find lowest used model
|
||||
# ----------------------
|
||||
lowest_tpm = float('inf')
|
||||
deployment = None
|
||||
|
||||
# Go through all the models to get tpm, rpm
|
||||
for item in potential_deployments:
|
||||
item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"])
|
||||
|
||||
if item_tpm == 0:
|
||||
return item
|
||||
elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]:
|
||||
continue
|
||||
elif item_tpm < lowest_tpm:
|
||||
lowest_tpm = item_tpm
|
||||
deployment = item
|
||||
|
||||
# if none, raise exception
|
||||
if deployment is None:
|
||||
raise ValueError(f"No models available.")
|
||||
|
||||
# return model
|
||||
return deployment
|
||||
|
||||
def _get_deployment_usage(
|
||||
self,
|
||||
deployment_name: str
|
||||
):
|
||||
# ------------
|
||||
# Setup values
|
||||
# ------------
|
||||
current_minute = datetime.now().strftime("%H-%M")
|
||||
tpm_key = f'{deployment_name}:tpm:{current_minute}'
|
||||
rpm_key = f'{deployment_name}:rpm:{current_minute}'
|
||||
|
||||
# ------------
|
||||
# Return usage
|
||||
# ------------
|
||||
tpm = self.cache.get(tpm_key)
|
||||
rpm = self.cache.get(rpm_key)
|
||||
return int(tpm), int(rpm)
|
||||
|
||||
def _set_deployment_usage(
|
||||
self,
|
||||
model_name: str,
|
||||
total_tokens: int
|
||||
):
|
||||
# ------------
|
||||
# Setup values
|
||||
# ------------
|
||||
current_minute = datetime.now().strftime("%H-%M")
|
||||
ttl = 120 # 2 minutes
|
||||
tpm_key = f'{model_name}:tpm:{current_minute}'
|
||||
rpm_key = f'{model_name}:rpm:{current_minute}'
|
||||
|
||||
# ------------
|
||||
# Update usage
|
||||
# ------------
|
||||
self.cache.increment(tpm_key, total_tokens, expiry=ttl)
|
||||
self.cache.increment(rpm_key, 1, expiry=ttl)
|
Loading…
Add table
Add a link
Reference in a new issue