Add AgentOps Integration to LiteLLM (#9685)

* feat(sidebars): add new item for agentops integration in Logging & Observability category

* Update agentops_integration.md to enhance title formatting and remove redundant section

* Enhance AgentOps integration in documentation and codebase by removing LiteLLMCallbackHandler references, adding environment variable configurations, and updating logging initialization for AgentOps support.

* Update AgentOps integration documentation to include instructions for obtaining API keys and clarify environment variable setup.

* Add unit tests for AgentOps integration and improve error handling in token fetching

* Add unit tests for AgentOps configuration and token fetching functionality

* Corrected agentops test directory

* Linting fix

* chore: add OpenTelemetry dependencies to pyproject.toml

* chore: update OpenTelemetry dependencies and add new packages in pyproject.toml and poetry.lock
This commit is contained in:
Dwij 2025-04-22 22:59:01 +05:30 committed by GitHub
parent ebfff975d4
commit b2955a2bdd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 608 additions and 67 deletions

View file

@ -0,0 +1,83 @@
# 🖇️ AgentOps - LLM Observability Platform
:::tip
This is community maintained. Please make an issue if you run into a bug:
https://github.com/BerriAI/litellm
:::
[AgentOps](https://docs.agentops.ai) is an observability platform that enables tracing and monitoring of LLM calls, providing detailed insights into your AI operations.
## Using AgentOps with LiteLLM
LiteLLM provides `success_callbacks` and `failure_callbacks`, allowing you to easily integrate AgentOps for comprehensive tracing and monitoring of your LLM operations.
### Integration
Use just a few lines of code to instantly trace your responses **across all providers** with AgentOps:
Get your AgentOps API Keys from https://app.agentops.ai/
```python
import litellm
# Configure LiteLLM to use AgentOps
litellm.success_callback = ["agentops"]
# Make your LLM calls as usual
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
```
Complete Code:
```python
import os
from litellm import completion
# Set env variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
# Configure LiteLLM to use AgentOps
litellm.success_callback = ["agentops"]
# OpenAI call
response = completion(
model="gpt-4",
messages=[{"role": "user", "content": "Hi 👋 - I'm OpenAI"}],
)
print(response)
```
### Configuration Options
The AgentOps integration can be configured through environment variables:
- `AGENTOPS_API_KEY` (str, optional): Your AgentOps API key
- `AGENTOPS_ENVIRONMENT` (str, optional): Deployment environment (defaults to "production")
- `AGENTOPS_SERVICE_NAME` (str, optional): Service name for tracing (defaults to "agentops")
### Advanced Usage
You can configure additional settings through environment variables:
```python
import os
# Configure AgentOps settings
os.environ["AGENTOPS_API_KEY"] = "your-agentops-api-key"
os.environ["AGENTOPS_ENVIRONMENT"] = "staging"
os.environ["AGENTOPS_SERVICE_NAME"] = "my-service"
# Enable AgentOps tracing
litellm.success_callback = ["agentops"]
```
### Support
For issues or questions, please refer to:
- [AgentOps Documentation](https://docs.agentops.ai)
- [LiteLLM Documentation](https://docs.litellm.ai)

View file

@ -411,6 +411,7 @@ const sidebars = {
type: "category",
label: "Logging & Observability",
items: [
"observability/agentops_integration",
"observability/langfuse_integration",
"observability/lunary_integration",
"observability/mlflow",