mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
Litellm dev 03 04 2025 p3 (#8997)
* fix(core_helpers.py): handle litellm_metadata instead of 'metadata' * feat(batches/): ensure batches logs are written to db makes batches response dict compatible * fix(cost_calculator.py): handle batch response being a dictionary * fix(batches/main.py): modify retrieve endpoints to use @client decorator enables logging to work on retrieve call * fix(batches/main.py): fix retrieve batch response type to be 'dict' compatible * fix(spend_tracking_utils.py): send unique uuid for retrieve batch call type create batch and retrieve batch share the same id * fix(spend_tracking_utils.py): prevent duplicate retrieve batch calls from being double counted * refactor(batches/): refactor cost tracking for batches - do it on retrieve, and within the established litellm_logging pipeline ensures cost is always logged to db * fix: fix linting errors * fix: fix linting error
This commit is contained in:
parent
f2a9d67e05
commit
b43b8dc21c
17 changed files with 314 additions and 219 deletions
|
@ -2,7 +2,7 @@
|
|||
Azure Batches API Handler
|
||||
"""
|
||||
|
||||
from typing import Any, Coroutine, Optional, Union
|
||||
from typing import Any, Coroutine, Optional, Union, cast
|
||||
|
||||
import httpx
|
||||
|
||||
|
@ -14,6 +14,7 @@ from litellm.types.llms.openai import (
|
|||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from litellm.types.utils import LiteLLMBatch
|
||||
|
||||
|
||||
class AzureBatchesAPI:
|
||||
|
@ -64,9 +65,9 @@ class AzureBatchesAPI:
|
|||
self,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
azure_client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
) -> LiteLLMBatch:
|
||||
response = await azure_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
def create_batch(
|
||||
self,
|
||||
|
@ -78,7 +79,7 @@ class AzureBatchesAPI:
|
|||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
|
||||
) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]:
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
|
@ -103,16 +104,16 @@ class AzureBatchesAPI:
|
|||
return self.acreate_batch( # type: ignore
|
||||
create_batch_data=create_batch_data, azure_client=azure_client
|
||||
)
|
||||
response = azure_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
response = cast(AzureOpenAI, azure_client).batches.create(**create_batch_data)
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
async def aretrieve_batch(
|
||||
self,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
) -> LiteLLMBatch:
|
||||
response = await client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
def retrieve_batch(
|
||||
self,
|
||||
|
@ -149,8 +150,10 @@ class AzureBatchesAPI:
|
|||
return self.aretrieve_batch( # type: ignore
|
||||
retrieve_batch_data=retrieve_batch_data, client=azure_client
|
||||
)
|
||||
response = azure_client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
response = cast(AzureOpenAI, azure_client).batches.retrieve(
|
||||
**retrieve_batch_data
|
||||
)
|
||||
return LiteLLMBatch(**response.model_dump())
|
||||
|
||||
async def acancel_batch(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue