update model split tests with ui

This commit is contained in:
Krrish Dholakia 2023-08-31 16:42:40 -07:00
parent 66bfd70253
commit b44299cce7
8 changed files with 80 additions and 3 deletions

View file

@ -1898,6 +1898,58 @@ async def stream_to_string(generator):
return response
########## experimental completion variants ############################
def get_model_split_test(models, completion_call_id):
global last_fetched_at
try:
# make the api call
last_fetched_at = time.time()
print(f"last_fetched_at: {last_fetched_at}")
response = requests.post(
#http://api.litellm.ai
url="http://api.litellm.ai/get_model_split_test", # get the updated dict from table or update the table with the dict
headers={"content-type": "application/json"},
data=json.dumps({"completion_call_id": completion_call_id, "models": models}),
)
print_verbose(f"get_model_list response: {response.text}")
data = response.json()
# update model list
split_test_models = data["split_test_models"]
# update environment - if required
threading.Thread(target=get_all_keys, args=()).start()
return split_test_models
except:
print_verbose(
f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}"
)
def completion_with_split_tests(models={}, messages=[], use_client=False, **kwargs):
"""
Example Usage:
models = {
"gpt-4": 0.7,
"huggingface/wizard-coder": 0.3
}
messages = [{ "content": "Hello, how are you?","role": "user"}]
completion_with_split_tests(models=models, messages=messages)
"""
import random
if use_client:
if "id" not in kwargs or kwargs["id"] is None:
raise ValueError("Please tag this completion call, if you'd like to update it's split test values through the UI. - eg. `completion_with_split_tests(.., id=1234)`.")
# get the most recent model split list from server
models = get_model_split_test(models=models, completion_call_id=kwargs["id"])
try:
selected_llm = random.choices(list(models.keys()), weights=list(models.values()))[0]
except:
traceback.print_exc()
raise ValueError("""models does not follow the required format - {'model_name': 'split_percentage'}, e.g. {'gpt-4': 0.7, 'huggingface/wizard-coder': 0.3}""")
return litellm.completion(model=selected_llm, messages=messages, **kwargs)
def completion_with_fallbacks(**kwargs):
response = None
rate_limited_models = set()