mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
fix(utils.py): fix parallel tool calling when streaming
This commit is contained in:
parent
9024a47dc2
commit
b6bc75e27a
3 changed files with 74 additions and 51 deletions
|
@ -13,7 +13,7 @@ import litellm
|
|||
from litellm import embedding, completion, completion_cost, Timeout
|
||||
from litellm import RateLimitError
|
||||
import pytest
|
||||
litellm.num_retries = 3
|
||||
litellm.num_retries = 0
|
||||
litellm.cache = None
|
||||
# litellm.set_verbose=True
|
||||
import json
|
||||
|
@ -97,6 +97,7 @@ def test_parallel_function_call():
|
|||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106",
|
||||
messages=messages,
|
||||
|
@ -108,7 +109,7 @@ def test_parallel_function_call():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_parallel_function_call()
|
||||
test_parallel_function_call()
|
||||
|
||||
|
||||
|
||||
|
@ -143,51 +144,53 @@ def test_parallel_function_call_stream():
|
|||
tools=tools,
|
||||
stream=True,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
complete_response = True
|
||||
)
|
||||
print("Response\n", response)
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
# response_message = response.choices[0].message
|
||||
# tool_calls = response_message.tool_calls
|
||||
# for chunk in response:
|
||||
# print(chunk)
|
||||
response_message = response.choices[0].message
|
||||
tool_calls = response_message.tool_calls
|
||||
|
||||
# print("length of tool calls", len(tool_calls))
|
||||
# print("Expecting there to be 3 tool calls")
|
||||
# assert len(tool_calls) > 1 # this has to call the function for SF, Tokyo and parise
|
||||
print("length of tool calls", len(tool_calls))
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert len(tool_calls) > 1 # this has to call the function for SF, Tokyo and parise
|
||||
|
||||
# # Step 2: check if the model wanted to call a function
|
||||
# if tool_calls:
|
||||
# # Step 3: call the function
|
||||
# # Note: the JSON response may not always be valid; be sure to handle errors
|
||||
# available_functions = {
|
||||
# "get_current_weather": get_current_weather,
|
||||
# } # only one function in this example, but you can have multiple
|
||||
# messages.append(response_message) # extend conversation with assistant's reply
|
||||
# print("Response message\n", response_message)
|
||||
# # Step 4: send the info for each function call and function response to the model
|
||||
# for tool_call in tool_calls:
|
||||
# function_name = tool_call.function.name
|
||||
# function_to_call = available_functions[function_name]
|
||||
# function_args = json.loads(tool_call.function.arguments)
|
||||
# function_response = function_to_call(
|
||||
# location=function_args.get("location"),
|
||||
# unit=function_args.get("unit"),
|
||||
# )
|
||||
# messages.append(
|
||||
# {
|
||||
# "tool_call_id": tool_call.id,
|
||||
# "role": "tool",
|
||||
# "name": function_name,
|
||||
# "content": function_response,
|
||||
# }
|
||||
# ) # extend conversation with function response
|
||||
# second_response = litellm.completion(
|
||||
# model="gpt-3.5-turbo-1106",
|
||||
# messages=messages,
|
||||
# temperature=0.2,
|
||||
# seed=22
|
||||
# ) # get a new response from the model where it can see the function response
|
||||
# print("second response\n", second_response)
|
||||
# return second_response
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
# Step 3: call the function
|
||||
# Note: the JSON response may not always be valid; be sure to handle errors
|
||||
available_functions = {
|
||||
"get_current_weather": get_current_weather,
|
||||
} # only one function in this example, but you can have multiple
|
||||
messages.append(response_message) # extend conversation with assistant's reply
|
||||
print("Response message\n", response_message)
|
||||
# Step 4: send the info for each function call and function response to the model
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call.function.name
|
||||
function_to_call = available_functions[function_name]
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
function_response = function_to_call(
|
||||
location=function_args.get("location"),
|
||||
unit=function_args.get("unit"),
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"tool_call_id": tool_call.id,
|
||||
"role": "tool",
|
||||
"name": function_name,
|
||||
"content": function_response,
|
||||
}
|
||||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106",
|
||||
messages=messages,
|
||||
temperature=0.2,
|
||||
seed=22
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
return second_response
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue