mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
feat: added explicit args to acomplete
This commit is contained in:
parent
04bbd0649f
commit
b72d372aa7
1 changed files with 72 additions and 26 deletions
|
@ -117,7 +117,31 @@ class Completions():
|
|||
return response
|
||||
|
||||
@client
|
||||
async def acompletion(*args, **kwargs):
|
||||
async def acompletion(
|
||||
model: str,
|
||||
messages: List = [],
|
||||
functions: Optional[List] = None,
|
||||
function_call: Optional[str] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
n: Optional[int] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stop=None,
|
||||
max_tokens: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict] = None,
|
||||
user: Optional[str] = None,
|
||||
metadata: Optional[Dict] = None,
|
||||
api_base: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
model_list: Optional[List] = None,
|
||||
mock_response: Optional[str] = None,
|
||||
force_timeout: Optional[int] = None,
|
||||
custom_llm_provider: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Asynchronously executes a litellm.completion() call for any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
|
||||
|
||||
|
@ -138,7 +162,7 @@ async def acompletion(*args, **kwargs):
|
|||
frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
|
||||
logit_bias (dict, optional): Used to modify the probability of specific tokens appearing in the completion.
|
||||
user (str, optional): A unique identifier representing your end-user. This can help the LLM provider to monitor and detect abuse.
|
||||
metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc.
|
||||
metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc.
|
||||
api_base (str, optional): Base URL for the API (default is None).
|
||||
api_version (str, optional): API version (default is None).
|
||||
api_key (str, optional): API key (default is None).
|
||||
|
@ -157,22 +181,44 @@ async def acompletion(*args, **kwargs):
|
|||
- If `stream` is True, the function returns an async generator that yields completion lines.
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
### PASS ARGS TO COMPLETION ###
|
||||
kwargs["acompletion"] = True
|
||||
custom_llm_provider = None
|
||||
try:
|
||||
# Adjusted to use explicit arguments instead of *args and **kwargs
|
||||
completion_kwargs = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"functions": functions,
|
||||
"function_call": function_call,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"n": n,
|
||||
"stream": stream,
|
||||
"stop": stop,
|
||||
"max_tokens": max_tokens,
|
||||
"presence_penalty": presence_penalty,
|
||||
"frequency_penalty": frequency_penalty,
|
||||
"logit_bias": logit_bias,
|
||||
"user": user,
|
||||
"metadata": metadata,
|
||||
"api_base": api_base,
|
||||
"api_version": api_version,
|
||||
"api_key": api_key,
|
||||
"model_list": model_list,
|
||||
"mock_response": mock_response,
|
||||
"force_timeout": force_timeout,
|
||||
"custom_llm_provider": custom_llm_provider,
|
||||
"acompletion": True # assuming this is a required parameter
|
||||
}
|
||||
try:
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(completion, *args, **kwargs)
|
||||
func = partial(completion, **completion_kwargs)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
|
||||
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=kwargs.get("api_base", None))
|
||||
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=completion_kwargs.get("api_base", None))
|
||||
|
||||
if (custom_llm_provider == "openai"
|
||||
or custom_llm_provider == "azure"
|
||||
if (custom_llm_provider == "openai"
|
||||
or custom_llm_provider == "azure"
|
||||
or custom_llm_provider == "custom_openai"
|
||||
or custom_llm_provider == "anyscale"
|
||||
or custom_llm_provider == "mistral"
|
||||
|
@ -182,39 +228,39 @@ async def acompletion(*args, **kwargs):
|
|||
or custom_llm_provider == "text-completion-openai"
|
||||
or custom_llm_provider == "huggingface"
|
||||
or custom_llm_provider == "ollama"
|
||||
or custom_llm_provider == "vertex_ai"): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||
if kwargs.get("stream", False):
|
||||
response = completion(*args, **kwargs)
|
||||
or custom_llm_provider == "vertex_ai"): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||
if completion_kwargs.get("stream", False):
|
||||
response = completion(**completion_kwargs)
|
||||
else:
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if isinstance(init_response, dict) or isinstance(init_response, ModelResponse): ## CACHING SCENARIO
|
||||
if isinstance(init_response, dict) or isinstance(init_response, ModelResponse): ## CACHING SCENARIO
|
||||
response = init_response
|
||||
elif asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
else:
|
||||
# Call the synchronous function using run_in_executor
|
||||
response = await loop.run_in_executor(None, func_with_context)
|
||||
if kwargs.get("stream", False): # return an async generator
|
||||
return _async_streaming(response=response, model=model, custom_llm_provider=custom_llm_provider, args=args)
|
||||
else:
|
||||
if completion_kwargs.get("stream", False): # return an async generator
|
||||
return _async_streaming(response=response, model=model, custom_llm_provider=custom_llm_provider, completion_kwargs=completion_kwargs)
|
||||
else:
|
||||
return response
|
||||
except Exception as e:
|
||||
except Exception as e:
|
||||
custom_llm_provider = custom_llm_provider or "openai"
|
||||
raise exception_type(
|
||||
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
|
||||
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=completion_kwargs,
|
||||
)
|
||||
|
||||
async def _async_streaming(response, model, custom_llm_provider, args):
|
||||
try:
|
||||
async def _async_streaming(response, model, custom_llm_provider, completion_kwargs):
|
||||
try:
|
||||
print_verbose(f"received response in _async_streaming: {response}")
|
||||
async for line in response:
|
||||
async for line in response:
|
||||
print_verbose(f"line in async streaming: {line}")
|
||||
yield line
|
||||
except Exception as e:
|
||||
except Exception as e:
|
||||
print_verbose(f"error raised _async_streaming: {traceback.format_exc()}")
|
||||
raise exception_type(
|
||||
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
|
||||
model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=completion_kwargs,
|
||||
)
|
||||
|
||||
def mock_completion(model: str, messages: List, stream: Optional[bool] = False, mock_response: str = "This is a mock request", **kwargs):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue