mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
LITELLM: Remove requests
library usage (#7235)
* fix(generic_api_callback.py): remove requests lib usage * fix(budget_manager.py): remove requests lib usgae * fix(main.py): cleanup requests lib usage * fix(utils.py): remove requests lib usage * fix(argilla.py): fix argilla test * fix(athina.py): replace 'requests' lib usage with litellm module * fix(greenscale.py): replace 'requests' lib usage with httpx * fix: remove unused 'requests' lib import + replace usage in some places * fix(prompt_layer.py): remove 'requests' lib usage from prompt layer * fix(ollama_chat.py): remove 'requests' lib usage * fix(baseten.py): replace 'requests' lib usage * fix(codestral/): replace 'requests' lib usage * fix(predibase/): replace 'requests' lib usage * refactor: cleanup unused 'requests' lib imports * fix(oobabooga.py): cleanup 'requests' lib usage * fix(invoke_handler.py): remove unused 'requests' lib usage * refactor: cleanup unused 'requests' lib import * fix: fix linting errors * refactor(ollama/): move ollama to using base llm http handler removes 'requests' lib dep for ollama integration * fix(ollama_chat.py): fix linting errors * fix(ollama/completion/transformation.py): convert non-jpeg/png image to jpeg/png before passing to ollama
This commit is contained in:
parent
224ead1531
commit
b82add11ba
46 changed files with 523 additions and 612 deletions
|
@ -1,3 +1,9 @@
|
|||
"""
|
||||
Ollama /chat/completion calls handled in llm_http_handler.py
|
||||
|
||||
[TODO]: migrate embeddings to a base handler as well.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
|
@ -8,10 +14,6 @@ from copy import deepcopy
|
|||
from itertools import chain
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import aiohttp
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
from litellm import verbose_logger
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||||
|
@ -31,370 +33,8 @@ from litellm.types.utils import (
|
|||
from ..common_utils import OllamaError
|
||||
from .transformation import OllamaConfig
|
||||
|
||||
|
||||
# ollama wants plain base64 jpeg/png files as images. strip any leading dataURI
|
||||
# and convert to jpeg if necessary.
|
||||
def _convert_image(image):
|
||||
import base64
|
||||
import io
|
||||
|
||||
try:
|
||||
from PIL import Image
|
||||
except Exception:
|
||||
raise Exception(
|
||||
"ollama image conversion failed please run `pip install Pillow`"
|
||||
)
|
||||
|
||||
orig = image
|
||||
if image.startswith("data:"):
|
||||
image = image.split(",")[-1]
|
||||
try:
|
||||
image_data = Image.open(io.BytesIO(base64.b64decode(image)))
|
||||
if image_data.format in ["JPEG", "PNG"]:
|
||||
return image
|
||||
except Exception:
|
||||
return orig
|
||||
jpeg_image = io.BytesIO()
|
||||
image_data.convert("RGB").save(jpeg_image, "JPEG")
|
||||
jpeg_image.seek(0)
|
||||
return base64.b64encode(jpeg_image.getvalue()).decode("utf-8")
|
||||
|
||||
|
||||
# ollama implementation
|
||||
def get_ollama_response(
|
||||
model_response: ModelResponse,
|
||||
model: str,
|
||||
prompt: str,
|
||||
optional_params: dict,
|
||||
logging_obj: Any,
|
||||
encoding: Any,
|
||||
acompletion: bool = False,
|
||||
api_base="http://localhost:11434",
|
||||
):
|
||||
if api_base.endswith("/api/generate"):
|
||||
url = api_base
|
||||
else:
|
||||
url = f"{api_base}/api/generate"
|
||||
|
||||
## Load Config
|
||||
config = litellm.OllamaConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
stream = optional_params.pop("stream", False)
|
||||
format = optional_params.pop("format", None)
|
||||
images = optional_params.pop("images", None)
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"options": optional_params,
|
||||
"stream": stream,
|
||||
}
|
||||
if format is not None:
|
||||
data["format"] = format
|
||||
if images is not None:
|
||||
data["images"] = [_convert_image(image) for image in images]
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=None,
|
||||
api_key=None,
|
||||
additional_args={
|
||||
"api_base": url,
|
||||
"complete_input_dict": data,
|
||||
"headers": {},
|
||||
"acompletion": acompletion,
|
||||
},
|
||||
)
|
||||
if acompletion is True:
|
||||
if stream is True:
|
||||
response = ollama_async_streaming(
|
||||
url=url,
|
||||
data=data,
|
||||
model_response=model_response,
|
||||
encoding=encoding,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
else:
|
||||
response = ollama_acompletion(
|
||||
url=url,
|
||||
data=data,
|
||||
model_response=model_response,
|
||||
encoding=encoding,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return response
|
||||
elif stream is True:
|
||||
return ollama_completion_stream(url=url, data=data, logging_obj=logging_obj)
|
||||
|
||||
response = requests.post(
|
||||
url=f"{url}", json={**data, "stream": stream}, timeout=litellm.request_timeout
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OllamaError(
|
||||
status_code=response.status_code,
|
||||
message=response.text,
|
||||
headers=dict(response.headers),
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response.text,
|
||||
additional_args={
|
||||
"headers": None,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
|
||||
response_json = response.json()
|
||||
|
||||
## RESPONSE OBJECT
|
||||
model_response.choices[0].finish_reason = "stop"
|
||||
if data.get("format", "") == "json":
|
||||
function_call = json.loads(response_json["response"])
|
||||
message = litellm.Message(
|
||||
content=None,
|
||||
tool_calls=[
|
||||
{
|
||||
"id": f"call_{str(uuid.uuid4())}",
|
||||
"function": {
|
||||
"name": function_call["name"],
|
||||
"arguments": json.dumps(function_call["arguments"]),
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
)
|
||||
model_response.choices[0].message = message # type: ignore
|
||||
model_response.choices[0].finish_reason = "tool_calls"
|
||||
else:
|
||||
model_response.choices[0].message.content = response_json["response"] # type: ignore
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = "ollama/" + model
|
||||
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(prompt, disallowed_special=()))) # type: ignore
|
||||
completion_tokens = response_json.get(
|
||||
"eval_count", len(response_json.get("message", dict()).get("content", ""))
|
||||
)
|
||||
setattr(
|
||||
model_response,
|
||||
"usage",
|
||||
litellm.Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
),
|
||||
)
|
||||
return model_response
|
||||
|
||||
|
||||
def ollama_completion_stream(url, data, logging_obj):
|
||||
with httpx.stream(
|
||||
url=url, json=data, method="POST", timeout=litellm.request_timeout
|
||||
) as response:
|
||||
try:
|
||||
if response.status_code != 200:
|
||||
raise OllamaError(
|
||||
status_code=response.status_code,
|
||||
message=str(response.read()),
|
||||
headers=response.headers,
|
||||
)
|
||||
|
||||
streamwrapper = litellm.CustomStreamWrapper(
|
||||
completion_stream=response.iter_lines(),
|
||||
model=data["model"],
|
||||
custom_llm_provider="ollama",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
# If format is JSON, this was a function call
|
||||
# Gather all chunks and return the function call as one delta to simplify parsing
|
||||
if data.get("format", "") == "json":
|
||||
first_chunk = next(streamwrapper)
|
||||
content_chunks = []
|
||||
for chunk in chain([first_chunk], streamwrapper):
|
||||
content_chunk = chunk.choices[0]
|
||||
if (
|
||||
isinstance(content_chunk, StreamingChoices)
|
||||
and hasattr(content_chunk, "delta")
|
||||
and hasattr(content_chunk.delta, "content")
|
||||
and content_chunk.delta.content is not None
|
||||
):
|
||||
content_chunks.append(content_chunk.delta.content)
|
||||
response_content = "".join(content_chunks)
|
||||
|
||||
function_call = json.loads(response_content)
|
||||
delta = litellm.utils.Delta(
|
||||
content=None,
|
||||
tool_calls=[
|
||||
{
|
||||
"id": f"call_{str(uuid.uuid4())}",
|
||||
"function": {
|
||||
"name": function_call["name"],
|
||||
"arguments": json.dumps(function_call["arguments"]),
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
)
|
||||
model_response = first_chunk
|
||||
model_response.choices[0].delta = delta # type: ignore
|
||||
model_response.choices[0].finish_reason = "tool_calls"
|
||||
yield model_response
|
||||
else:
|
||||
for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
async def ollama_async_streaming(url, data, model_response, encoding, logging_obj):
|
||||
try:
|
||||
_async_http_client = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders.OLLAMA
|
||||
)
|
||||
client = _async_http_client.client
|
||||
async with client.stream(
|
||||
url=f"{url}", json=data, method="POST", timeout=litellm.request_timeout
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
raise OllamaError(
|
||||
status_code=response.status_code,
|
||||
message=str(await response.aread()),
|
||||
headers=dict(response.headers),
|
||||
)
|
||||
|
||||
streamwrapper = litellm.CustomStreamWrapper(
|
||||
completion_stream=response.aiter_lines(),
|
||||
model=data["model"],
|
||||
custom_llm_provider="ollama",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
# If format is JSON, this was a function call
|
||||
# Gather all chunks and return the function call as one delta to simplify parsing
|
||||
if data.get("format", "") == "json":
|
||||
first_chunk = await anext(streamwrapper) # noqa F821
|
||||
chunk_choice = first_chunk.choices[0]
|
||||
if (
|
||||
isinstance(chunk_choice, StreamingChoices)
|
||||
and hasattr(chunk_choice, "delta")
|
||||
and hasattr(chunk_choice.delta, "content")
|
||||
):
|
||||
first_chunk_content = chunk_choice.delta.content or ""
|
||||
else:
|
||||
first_chunk_content = ""
|
||||
|
||||
content_chunks = []
|
||||
async for chunk in streamwrapper:
|
||||
chunk_choice = chunk.choices[0]
|
||||
if (
|
||||
isinstance(chunk_choice, StreamingChoices)
|
||||
and hasattr(chunk_choice, "delta")
|
||||
and hasattr(chunk_choice.delta, "content")
|
||||
):
|
||||
content_chunks.append(chunk_choice.delta.content)
|
||||
response_content = first_chunk_content + "".join(content_chunks)
|
||||
function_call = json.loads(response_content)
|
||||
delta = litellm.utils.Delta(
|
||||
content=None,
|
||||
tool_calls=[
|
||||
{
|
||||
"id": f"call_{str(uuid.uuid4())}",
|
||||
"function": {
|
||||
"name": function_call["name"],
|
||||
"arguments": json.dumps(function_call["arguments"]),
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
)
|
||||
model_response = first_chunk
|
||||
model_response.choices[0].delta = delta # type: ignore
|
||||
model_response.choices[0].finish_reason = "tool_calls"
|
||||
yield model_response
|
||||
else:
|
||||
async for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
except Exception as e:
|
||||
raise e # don't use verbose_logger.exception, if exception is raised
|
||||
|
||||
|
||||
async def ollama_acompletion(
|
||||
url, data, model_response: litellm.ModelResponse, encoding, logging_obj
|
||||
):
|
||||
data["stream"] = False
|
||||
try:
|
||||
timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes
|
||||
async with aiohttp.ClientSession(timeout=timeout) as session:
|
||||
resp = await session.post(url, json=data)
|
||||
|
||||
if resp.status != 200:
|
||||
text = await resp.text()
|
||||
raise OllamaError(
|
||||
status_code=resp.status,
|
||||
message=text,
|
||||
headers=dict(resp.headers),
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data["prompt"],
|
||||
api_key="",
|
||||
original_response=resp.text,
|
||||
additional_args={
|
||||
"headers": None,
|
||||
"api_base": url,
|
||||
},
|
||||
)
|
||||
|
||||
response_json = await resp.json()
|
||||
## RESPONSE OBJECT
|
||||
model_response.choices[0].finish_reason = "stop"
|
||||
if data.get("format", "") == "json":
|
||||
function_call = json.loads(response_json["response"])
|
||||
message = litellm.Message(
|
||||
content=None,
|
||||
tool_calls=[
|
||||
{
|
||||
"id": f"call_{str(uuid.uuid4())}",
|
||||
"function": {
|
||||
"name": function_call.get(
|
||||
"name", function_call.get("function", None)
|
||||
),
|
||||
"arguments": json.dumps(function_call["arguments"]),
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
)
|
||||
model_response.choices[0].message = message # type: ignore
|
||||
model_response.choices[0].finish_reason = "tool_calls"
|
||||
else:
|
||||
model_response.choices[0].message.content = response_json["response"] # type: ignore
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = "ollama/" + data["model"]
|
||||
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(data["prompt"], disallowed_special=()))) # type: ignore
|
||||
completion_tokens = response_json.get(
|
||||
"eval_count",
|
||||
len(response_json.get("message", dict()).get("content", "")),
|
||||
)
|
||||
setattr(
|
||||
model_response,
|
||||
"usage",
|
||||
litellm.Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
),
|
||||
)
|
||||
return model_response
|
||||
except Exception as e:
|
||||
raise e # don't use verbose_logger.exception, if exception is raised
|
||||
|
||||
|
||||
async def ollama_aembeddings(
|
||||
api_base: str,
|
||||
|
@ -432,39 +72,18 @@ async def ollama_aembeddings(
|
|||
total_input_tokens = 0
|
||||
output_data = []
|
||||
|
||||
timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes
|
||||
async with aiohttp.ClientSession(timeout=timeout) as session:
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=None,
|
||||
api_key=None,
|
||||
additional_args={
|
||||
"api_base": url,
|
||||
"complete_input_dict": data,
|
||||
"headers": {},
|
||||
},
|
||||
)
|
||||
response = await litellm.module_level_aclient.post(url=url, json=data)
|
||||
|
||||
response = await session.post(url, json=data)
|
||||
response_json = await response.json()
|
||||
|
||||
if response.status != 200:
|
||||
text = await response.text()
|
||||
raise OllamaError(
|
||||
status_code=response.status,
|
||||
message=text,
|
||||
headers=dict(response.headers),
|
||||
)
|
||||
embeddings: List[List[float]] = response_json["embeddings"]
|
||||
for idx, emb in enumerate(embeddings):
|
||||
output_data.append({"object": "embedding", "index": idx, "embedding": emb})
|
||||
|
||||
response_json = await response.json()
|
||||
|
||||
embeddings: List[List[float]] = response_json["embeddings"]
|
||||
for idx, emb in enumerate(embeddings):
|
||||
output_data.append({"object": "embedding", "index": idx, "embedding": emb})
|
||||
|
||||
input_tokens = response_json.get("prompt_eval_count") or len(
|
||||
encoding.encode("".join(prompt for prompt in prompts))
|
||||
)
|
||||
total_input_tokens += input_tokens
|
||||
input_tokens = response_json.get("prompt_eval_count") or len(
|
||||
encoding.encode("".join(prompt for prompt in prompts))
|
||||
)
|
||||
total_input_tokens += input_tokens
|
||||
|
||||
model_response.object = "list"
|
||||
model_response.data = output_data
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue