Merge pull request #647 from nirga/traceloop-bug

fix: bugs in traceloop integration
This commit is contained in:
Krish Dholakia 2023-10-24 17:38:30 -07:00 committed by GitHub
commit b86c679e71
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 144 additions and 11 deletions

View file

@ -10,22 +10,19 @@ It is based on [OpenTelemetry](https://opentelemetry.io), so it can provide full
## Getting Started ## Getting Started
First, sign up to get an API key on the [Traceloop dashboard](https://app.traceloop.com/settings/api-keys). Install the Traceloop SDK:
Then, install the Traceloop SDK:
``` ```
pip install traceloop-sdk pip install traceloop-sdk
``` ```
Use just 1 line of code, to instantly log your LLM responses: Use just 2 lines of code, to instantly log your LLM responses with OpenTelemetry:
```python ```python
Traceloop.init(app_name=<YOUR APP NAME>, disable_batch=True)
litellm.success_callback = ["traceloop"] litellm.success_callback = ["traceloop"]
``` ```
When running your app, make sure to set the `TRACELOOP_API_KEY` environment variable to your API key.
To get better visualizations on how your code behaves, you may want to annotate specific parts of your LLM chain. See [Traceloop docs on decorators](https://traceloop.com/docs/python-sdk/decorators) for more information. To get better visualizations on how your code behaves, you may want to annotate specific parts of your LLM chain. See [Traceloop docs on decorators](https://traceloop.com/docs/python-sdk/decorators) for more information.
## Exporting traces to other systems (e.g. Datadog, New Relic, and others) ## Exporting traces to other systems (e.g. Datadog, New Relic, and others)

View file

@ -1,8 +1,78 @@
import sys
class TraceloopLogger: class TraceloopLogger:
def __init__(self): def __init__(self):
from traceloop.tracing import Tracer from traceloop.sdk.tracing.tracing import TracerWrapper
self.tracer = Tracer.init(app_name=sys.argv[0], disable_batch=True) self.tracer_wrapper = TracerWrapper()
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
from opentelemetry.trace import SpanKind
from opentelemetry.semconv.ai import SpanAttributes
try:
tracer = self.tracer_wrapper.get_tracer()
model = kwargs.get("model")
# LiteLLM uses the standard OpenAI library, so it's already handled by Traceloop SDK
if "gpt" in model:
return
with tracer.start_as_current_span(
"litellm.completion",
kind=SpanKind.CLIENT,
) as span:
if span.is_recording():
span.set_attribute(
SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model")
)
span.set_attribute(
SpanAttributes.LLM_REQUEST_MAX_TOKENS, kwargs.get("max_tokens")
)
span.set_attribute(
SpanAttributes.LLM_TEMPERATURE, kwargs.get("temperature")
)
for idx, prompt in enumerate(kwargs.get("messages")):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
prompt.get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
)
span.set_attribute(
SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model")
)
usage = response_obj.get("usage")
if usage:
span.set_attribute(
SpanAttributes.LLM_USAGE_TOTAL_TOKENS,
usage.get("total_tokens"),
)
span.set_attribute(
SpanAttributes.LLM_USAGE_COMPLETION_TOKENS,
usage.get("completion_tokens"),
)
span.set_attribute(
SpanAttributes.LLM_USAGE_PROMPT_TOKENS,
usage.get("prompt_tokens"),
)
for idx, choice in enumerate(response_obj.get("choices")):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason",
choice.get("finish_reason"),
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role",
choice.get("message").get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
choice.get("message").get("content"),
)
except Exception as e:
print_verbose(f"Traceloop Layer Error - {e}")

View file

@ -0,0 +1,57 @@
import litellm
from litellm import completion
from traceloop.sdk import Traceloop
Traceloop.init(app_name="test_traceloop", disable_batch=True)
litellm.success_callback = ["traceloop"]
def test_traceloop_logging():
try:
response = completion(
model="claude-instant-1.2",
messages=[
{"role": "user", "content": "Tell me a joke about OpenTelemetry"}
],
max_tokens=10,
temperature=0.2,
)
print(response)
except Exception as e:
print(e)
test_traceloop_logging()
def test_traceloop_tracing_function_calling():
function1 = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what's the weather in boston"}],
temperature=0.1,
functions=function1,
)
print(response)
except Exception as e:
print(e)
test_traceloop_tracing_function_calling()

View file

@ -2412,6 +2412,15 @@ def handle_success(args, kwargs, result, start_time, end_time):
print_verbose=print_verbose, print_verbose=print_verbose,
) )
elif callback == "traceloop":
traceloopLogger.log_event(
kwargs=kwargs,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
)
elif callback == "aispend": elif callback == "aispend":
print_verbose("reaches aispend for logging!") print_verbose("reaches aispend for logging!")
model = args[0] if len(args) > 0 else kwargs["model"] model = args[0] if len(args) > 0 else kwargs["model"]