mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
Merge pull request #647 from nirga/traceloop-bug
fix: bugs in traceloop integration
This commit is contained in:
commit
b86c679e71
4 changed files with 144 additions and 11 deletions
|
@ -10,22 +10,19 @@ It is based on [OpenTelemetry](https://opentelemetry.io), so it can provide full
|
|||
|
||||
## Getting Started
|
||||
|
||||
First, sign up to get an API key on the [Traceloop dashboard](https://app.traceloop.com/settings/api-keys).
|
||||
|
||||
Then, install the Traceloop SDK:
|
||||
Install the Traceloop SDK:
|
||||
|
||||
```
|
||||
pip install traceloop-sdk
|
||||
```
|
||||
|
||||
Use just 1 line of code, to instantly log your LLM responses:
|
||||
Use just 2 lines of code, to instantly log your LLM responses with OpenTelemetry:
|
||||
|
||||
```python
|
||||
Traceloop.init(app_name=<YOUR APP NAME>, disable_batch=True)
|
||||
litellm.success_callback = ["traceloop"]
|
||||
```
|
||||
|
||||
When running your app, make sure to set the `TRACELOOP_API_KEY` environment variable to your API key.
|
||||
|
||||
To get better visualizations on how your code behaves, you may want to annotate specific parts of your LLM chain. See [Traceloop docs on decorators](https://traceloop.com/docs/python-sdk/decorators) for more information.
|
||||
|
||||
## Exporting traces to other systems (e.g. Datadog, New Relic, and others)
|
||||
|
|
|
@ -1,8 +1,78 @@
|
|||
import sys
|
||||
|
||||
|
||||
class TraceloopLogger:
|
||||
def __init__(self):
|
||||
from traceloop.tracing import Tracer
|
||||
from traceloop.sdk.tracing.tracing import TracerWrapper
|
||||
|
||||
self.tracer = Tracer.init(app_name=sys.argv[0], disable_batch=True)
|
||||
self.tracer_wrapper = TracerWrapper()
|
||||
|
||||
def log_event(self, kwargs, response_obj, start_time, end_time, print_verbose):
|
||||
from opentelemetry.trace import SpanKind
|
||||
from opentelemetry.semconv.ai import SpanAttributes
|
||||
|
||||
try:
|
||||
tracer = self.tracer_wrapper.get_tracer()
|
||||
|
||||
model = kwargs.get("model")
|
||||
|
||||
# LiteLLM uses the standard OpenAI library, so it's already handled by Traceloop SDK
|
||||
if "gpt" in model:
|
||||
return
|
||||
|
||||
with tracer.start_as_current_span(
|
||||
"litellm.completion",
|
||||
kind=SpanKind.CLIENT,
|
||||
) as span:
|
||||
if span.is_recording():
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model")
|
||||
)
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_REQUEST_MAX_TOKENS, kwargs.get("max_tokens")
|
||||
)
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_TEMPERATURE, kwargs.get("temperature")
|
||||
)
|
||||
|
||||
for idx, prompt in enumerate(kwargs.get("messages")):
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
|
||||
prompt.get("role"),
|
||||
)
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
|
||||
prompt.get("content"),
|
||||
)
|
||||
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model")
|
||||
)
|
||||
usage = response_obj.get("usage")
|
||||
if usage:
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_USAGE_TOTAL_TOKENS,
|
||||
usage.get("total_tokens"),
|
||||
)
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_USAGE_COMPLETION_TOKENS,
|
||||
usage.get("completion_tokens"),
|
||||
)
|
||||
span.set_attribute(
|
||||
SpanAttributes.LLM_USAGE_PROMPT_TOKENS,
|
||||
usage.get("prompt_tokens"),
|
||||
)
|
||||
|
||||
for idx, choice in enumerate(response_obj.get("choices")):
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason",
|
||||
choice.get("finish_reason"),
|
||||
)
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role",
|
||||
choice.get("message").get("role"),
|
||||
)
|
||||
span.set_attribute(
|
||||
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
|
||||
choice.get("message").get("content"),
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print_verbose(f"Traceloop Layer Error - {e}")
|
||||
|
|
57
litellm/tests/test_traceloop.py
Normal file
57
litellm/tests/test_traceloop.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
import litellm
|
||||
from litellm import completion
|
||||
from traceloop.sdk import Traceloop
|
||||
|
||||
Traceloop.init(app_name="test_traceloop", disable_batch=True)
|
||||
litellm.success_callback = ["traceloop"]
|
||||
|
||||
|
||||
def test_traceloop_logging():
|
||||
try:
|
||||
response = completion(
|
||||
model="claude-instant-1.2",
|
||||
messages=[
|
||||
{"role": "user", "content": "Tell me a joke about OpenTelemetry"}
|
||||
],
|
||||
max_tokens=10,
|
||||
temperature=0.2,
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
test_traceloop_logging()
|
||||
|
||||
|
||||
def test_traceloop_tracing_function_calling():
|
||||
function1 = [
|
||||
{
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
}
|
||||
]
|
||||
try:
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "what's the weather in boston"}],
|
||||
temperature=0.1,
|
||||
functions=function1,
|
||||
)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
test_traceloop_tracing_function_calling()
|
|
@ -2411,6 +2411,15 @@ def handle_success(args, kwargs, result, start_time, end_time):
|
|||
end_time=end_time,
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
|
||||
elif callback == "traceloop":
|
||||
traceloopLogger.log_event(
|
||||
kwargs=kwargs,
|
||||
response_obj=result,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
print_verbose=print_verbose,
|
||||
)
|
||||
|
||||
elif callback == "aispend":
|
||||
print_verbose("reaches aispend for logging!")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue