fix aleph alpha client init

This commit is contained in:
ishaan-jaff 2023-09-04 15:14:08 -07:00
parent 5ae420317e
commit b8b7d9bf44
3 changed files with 108 additions and 122 deletions

View file

@ -1,4 +1,5 @@
import os, json import os
import json
from enum import Enum from enum import Enum
import requests import requests
import time import time
@ -13,126 +14,112 @@ class AlephAlphaError(Exception):
self.message self.message
) # Call the base class constructor with the parameters it needs ) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
class AlephAlphaLLM: def completion(
def __init__( model: str,
self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None messages: list,
): model_response: ModelResponse,
self.encoding = encoding print_verbose: Callable,
self.default_max_tokens_to_sample = default_max_tokens_to_sample encoding,
self.completion_url = "https://api.aleph-alpha.com/complete" api_key,
self.api_key = api_key logging_obj,
self.logging_obj = logging_obj optional_params=None,
self.validate_environment(api_key=api_key) litellm_params=None,
logger_fn=None,
def validate_environment( default_max_tokens_to_sample=None,
self, api_key ):
): # set up the environment required to run the model headers = validate_environment(api_key)
# set the api key completion_url = "https://api.aleph-alpha.com/complete"
if self.api_key == None: model = model
raise ValueError( prompt = ""
"Missing Aleph Alpha API Key - A call is being made to Aleph Alpha but no key is set either in the environment variables or via params" if "control" in model: # follow the ###Instruction / ###Response format
) for idx, message in enumerate(messages):
self.api_key = api_key if "role" in message:
self.headers = { if idx == 0: # set first message as instruction (required), let later user messages be input
"accept": "application/json", prompt += f"###Instruction: {message['content']}"
"content-type": "application/json",
"Authorization": "Bearer " + self.api_key,
}
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = ""
if "control" in model: # follow the ###Instruction / ###Response format
for idx, message in enumerate(messages):
if "role" in message:
if idx == 0: # set first message as instruction (required), let later user messages be input
prompt += f"###Instruction: {message['content']}"
else:
if message["role"] == "system":
prompt += (
f"###Instruction: {message['content']}"
)
elif message["role"] == "user":
prompt += (
f"###Input: {message['content']}"
)
else:
prompt += (
f"###Response: {message['content']}"
)
else: else:
prompt += f"{message['content']}" if message["role"] == "system":
else: prompt += (
prompt = " ".join(message["content"] for message in messages) f"###Instruction: {message['content']}"
data = { )
"model": model, elif message["role"] == "user":
"prompt": prompt, prompt += (
"maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else self.default_max_tokens_to_sample, # required input f"###Input: {message['content']}"
**optional_params, )
} else:
prompt += (
f"###Response: {message['content']}"
)
else:
prompt += f"{message['content']}"
else:
prompt = " ".join(message["content"] for message in messages)
data = {
"model": model,
"prompt": prompt,
"maximum_tokens": optional_params["maximum_tokens"] if "maximum_tokens" in optional_params else default_max_tokens_to_sample, # required input
**optional_params,
}
## LOGGING ## LOGGING
self.logging_obj.pre_call( logging_obj.pre_call(
input=prompt, input=prompt,
api_key=self.api_key, api_key=api_key,
additional_args={"complete_input_dict": data}, additional_args={"complete_input_dict": data},
) )
## COMPLETION CALL ## COMPLETION CALL
response = requests.post( response = requests.post(
self.completion_url, headers=self.headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
) )
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines() return response.iter_lines()
else: else:
## LOGGING ## LOGGING
self.logging_obj.post_call( logging_obj.post_call(
input=prompt, input=prompt,
api_key=self.api_key, api_key=api_key,
original_response=response.text, original_response=response.text,
additional_args={"complete_input_dict": data}, additional_args={"complete_input_dict": data},
) )
print_verbose(f"raw model_response: {response.text}") print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT ## RESPONSE OBJECT
completion_response = response.json() completion_response = response.json()
if "error" in completion_response: if "error" in completion_response:
raise AlephAlphaError( raise AlephAlphaError(
message=completion_response["error"], message=completion_response["error"],
status_code=response.status_code, status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"]
except:
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
self.encoding.encode(prompt)
)
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
) )
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["completion"]
except:
raise AlephAlphaError(message=json.dumps(completion_response), status_code=response.status_code)
model_response["created"] = time.time() ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
model_response["model"] = model prompt_tokens = len(
model_response["usage"] = { encoding.encode(prompt)
"prompt_tokens": prompt_tokens, )
"completion_tokens": completion_tokens, completion_tokens = len(
"total_tokens": prompt_tokens + completion_tokens, encoding.encode(model_response["choices"][0]["message"]["content"])
} )
return model_response
def embedding( model_response["created"] = time.time()
self, model_response["model"] = model
): # logic for parsing in - calling - parsing out model embedding calls model_response["usage"] = {
pass "prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -25,8 +25,8 @@ from .llms import ai21
from .llms import sagemaker from .llms import sagemaker
from .llms import bedrock from .llms import bedrock
from .llms import huggingface_restapi from .llms import huggingface_restapi
from .llms import aleph_alpha
from .llms.baseten import BasetenLLM from .llms.baseten import BasetenLLM
from .llms.aleph_alpha import AlephAlphaLLM
import tiktoken import tiktoken
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
@ -427,17 +427,10 @@ def completion(
response = model_response response = model_response
elif model in litellm.aleph_alpha_models: elif model in litellm.aleph_alpha_models:
aleph_alpha_key = ( aleph_alpha_key = (
api_key or litellm.aleph_alpha_key or os.environ.get("ALEPH_ALPHA_API_KEY") api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY") or get_secret("ALEPHALPHA_API_KEY")
) )
aleph_alpha_client = AlephAlphaLLM( model_response = aleph_alpha.completion(
encoding=encoding,
default_max_tokens_to_sample=litellm.max_tokens,
api_key=aleph_alpha_key,
logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
)
model_response = aleph_alpha_client.completion(
model=model, model=model,
messages=messages, messages=messages,
model_response=model_response, model_response=model_response,
@ -445,6 +438,10 @@ def completion(
optional_params=optional_params, optional_params=optional_params,
litellm_params=litellm_params, litellm_params=litellm_params,
logger_fn=logger_fn, logger_fn=logger_fn,
encoding=encoding,
default_max_tokens_to_sample=litellm.max_tokens,
api_key=aleph_alpha_key,
logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
) )
if "stream" in optional_params and optional_params["stream"] == True: if "stream" in optional_params and optional_params["stream"] == True:

View file

@ -64,6 +64,7 @@ def test_completion_claude():
# print(response) # print(response)
# except Exception as e: # except Exception as e:
# pytest.fail(f"Error occurred: {e}") # pytest.fail(f"Error occurred: {e}")
# test_completion_aleph_alpha()
# def test_completion_aleph_alpha_control_models(): # def test_completion_aleph_alpha_control_models():
@ -75,6 +76,7 @@ def test_completion_claude():
# print(response) # print(response)
# except Exception as e: # except Exception as e:
# pytest.fail(f"Error occurred: {e}") # pytest.fail(f"Error occurred: {e}")
# test_completion_aleph_alpha_control_models()
def test_completion_with_litellm_call_id(): def test_completion_with_litellm_call_id():
try: try:
@ -126,8 +128,8 @@ def test_completion_claude_stream():
# if "loading" in str(e): # if "loading" in str(e):
# pass # pass
# pytest.fail(f"Error occurred: {e}") # pytest.fail(f"Error occurred: {e}")
# # test_completion_hf_api()
# test_completion_hf_api()
# def test_completion_hf_deployed_api(): # def test_completion_hf_deployed_api():
# try: # try: