mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
feat(proxy_server.py): EXPERIMENTAL: adding queuing endpoints to openai proxy server
This commit is contained in:
parent
72ed7ad2d0
commit
b8e62f3d0c
3 changed files with 81 additions and 1 deletions
|
@ -96,6 +96,7 @@ from fastapi.middleware.cors import CORSMiddleware
|
|||
from fastapi.security import OAuth2PasswordBearer
|
||||
import json
|
||||
import logging
|
||||
from litellm import start_rq_worker_in_background
|
||||
|
||||
app = FastAPI(docs_url="/", title="LiteLLM API")
|
||||
router = APIRouter()
|
||||
|
@ -135,6 +136,10 @@ log_file = "api_log.json"
|
|||
worker_config = None
|
||||
master_key = None
|
||||
prisma_client = None
|
||||
### REDIS QUEUE ###
|
||||
redis_job = None
|
||||
redis_connection = None
|
||||
request_queue = None # Redis Queue for handling requests
|
||||
#### HELPER FUNCTIONS ####
|
||||
def print_verbose(print_statement):
|
||||
global user_debug
|
||||
|
@ -199,6 +204,19 @@ def prisma_setup(database_url: Optional[str]):
|
|||
from prisma import Client
|
||||
prisma_client = Client()
|
||||
|
||||
def rq_setup(use_queue: bool):
|
||||
global request_queue, redis_connection, redis_job
|
||||
print(f"value of use_queue: {use_queue}")
|
||||
if use_queue:
|
||||
from redis import Redis
|
||||
from rq import Queue
|
||||
from rq.job import Job
|
||||
|
||||
redis_job = Job
|
||||
start_rq_worker_in_background()
|
||||
redis_connection = Redis(host=os.getenv("REDIS_HOST"), port=os.getenv("REDIS_PORT"), password=os.getenv("REDIS_PASSWORD"))
|
||||
request_queue = Queue(connection=redis_connection)
|
||||
|
||||
def run_ollama_serve():
|
||||
command = ['ollama', 'serve']
|
||||
|
||||
|
@ -234,7 +252,9 @@ def load_router_config(router: Optional[litellm.Router], config_file_path: str):
|
|||
### CONNECT TO DATABASE ###
|
||||
database_url = general_settings.get("database_url", None)
|
||||
prisma_setup(database_url=database_url)
|
||||
|
||||
### START REDIS QUEUE ###
|
||||
use_queue = general_settings.get("use_queue", False)
|
||||
rq_setup(use_queue=use_queue)
|
||||
|
||||
## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..)
|
||||
litellm_settings = config.get('litellm_settings', None)
|
||||
|
@ -551,6 +571,33 @@ async def generate_key_fn(request: Request):
|
|||
detail={"error": "models param must be a list"},
|
||||
)
|
||||
|
||||
@router.post("/queue/chat/completions", dependencies=[Depends(user_api_key_auth)])
|
||||
async def async_chat_completions(request: Request):
|
||||
global request_queue
|
||||
body = await request.body()
|
||||
body_str = body.decode()
|
||||
try:
|
||||
data = ast.literal_eval(body_str)
|
||||
except:
|
||||
data = json.loads(body_str)
|
||||
data["model"] = (
|
||||
server_settings.get("completion_model", None) # server default
|
||||
or user_model # model name passed via cli args
|
||||
or data["model"] # default passed in http request
|
||||
)
|
||||
data["call_type"] = "chat_completion"
|
||||
job = request_queue.enqueue(litellm_completion, **data)
|
||||
return {"id": job.id, "url": f"/queue/chat/completions/{job.id}", "eta": 5, "status": "queued"}
|
||||
pass
|
||||
|
||||
@router.get("/queue/response/{task_id}", dependencies=[Depends(user_api_key_auth)])
|
||||
async def async_chat_completions(request: Request, task_id: str):
|
||||
global redis_connection, redis_job
|
||||
job = redis_job.fetch(id=task_id, connection=redis_connection)
|
||||
print(f"job status: {job.get_status()}")
|
||||
result = job.result
|
||||
return {"status": job.get_status(), "result": result}
|
||||
|
||||
|
||||
@router.get("/ollama_logs", dependencies=[Depends(user_api_key_auth)])
|
||||
async def retrieve_server_log(request: Request):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue