feat(utils.py): support gemini/vertex ai streaming function param usage

This commit is contained in:
Krrish Dholakia 2024-08-26 11:23:45 -07:00
parent d13d2e8a62
commit b9d1296319
2 changed files with 57 additions and 9 deletions

View file

@ -755,27 +755,40 @@ async def test_completion_gemini_stream(sync_mode):
try:
litellm.set_verbose = True
print("Streaming gemini response")
messages = [
{"role": "system", "content": "You are a helpful assistant."},
function1 = [
{
"role": "user",
"content": "Who was Alexander?",
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
messages = [{"role": "user", "content": "What is the weather like in Boston?"}]
print("testing gemini streaming")
complete_response = ""
# Add any assertions here to check the response
non_empty_chunks = 0
chunks = []
if sync_mode:
response = completion(
model="gemini/gemini-1.5-flash",
messages=messages,
stream=True,
functions=function1,
)
for idx, chunk in enumerate(response):
print(chunk)
chunks.append(chunk)
# print(chunk.choices[0].delta)
chunk, finished = streaming_format_tests(idx, chunk)
if finished:
@ -787,11 +800,13 @@ async def test_completion_gemini_stream(sync_mode):
model="gemini/gemini-1.5-flash",
messages=messages,
stream=True,
functions=function1,
)
idx = 0
async for chunk in response:
print(chunk)
chunks.append(chunk)
# print(chunk.choices[0].delta)
chunk, finished = streaming_format_tests(idx, chunk)
if finished:
@ -800,10 +815,17 @@ async def test_completion_gemini_stream(sync_mode):
complete_response += chunk
idx += 1
if complete_response.strip() == "":
raise Exception("Empty response received")
# if complete_response.strip() == "":
# raise Exception("Empty response received")
print(f"completion_response: {complete_response}")
assert non_empty_chunks > 1
complete_response = litellm.stream_chunk_builder(
chunks=chunks, messages=messages
)
assert complete_response.choices[0].message.function_call is not None
# assert non_empty_chunks > 1
except litellm.InternalServerError as e:
pass
except litellm.RateLimitError as e:

View file

@ -8771,6 +8771,7 @@ class CustomStreamWrapper:
self.chunks: List = (
[]
) # keep track of the returned chunks - used for calculating the input/output tokens for stream options
self.is_function_call = self.check_is_function_call(logging_obj=logging_obj)
def __iter__(self):
return self
@ -8778,6 +8779,19 @@ class CustomStreamWrapper:
def __aiter__(self):
return self
def check_is_function_call(self, logging_obj) -> bool:
if hasattr(logging_obj, "optional_params") and isinstance(
logging_obj.optional_params, dict
):
if (
"litellm_param_is_function_call" in logging_obj.optional_params
and logging_obj.optional_params["litellm_param_is_function_call"]
is not None
):
return True
return False
def process_chunk(self, chunk: str):
"""
NLP Cloud streaming returns the entire response, for each chunk. Process this, to only return the delta.
@ -10275,6 +10289,12 @@ class CustomStreamWrapper:
## CHECK FOR TOOL USE
if "tool_calls" in completion_obj and len(completion_obj["tool_calls"]) > 0:
if self.is_function_call is True: # user passed in 'functions' param
completion_obj["function_call"] = completion_obj["tool_calls"][0][
"function"
]
completion_obj["tool_calls"] = None
self.tool_call = True
## RETURN ARG
@ -10286,8 +10306,13 @@ class CustomStreamWrapper:
)
or (
"tool_calls" in completion_obj
and completion_obj["tool_calls"] is not None
and len(completion_obj["tool_calls"]) > 0
)
or (
"function_call" in completion_obj
and completion_obj["function_call"] is not None
)
): # cannot set content of an OpenAI Object to be an empty string
self.safety_checker()
hold, model_response_str = self.check_special_tokens(
@ -10347,6 +10372,7 @@ class CustomStreamWrapper:
if self.sent_first_chunk is False:
completion_obj["role"] = "assistant"
self.sent_first_chunk = True
model_response.choices[0].delta = Delta(**completion_obj)
if completion_obj.get("index") is not None:
model_response.choices[0].index = completion_obj.get(