refactor: instrument body param to bubble up on exception

This commit is contained in:
Krrish Dholakia 2025-03-10 15:21:04 -07:00
parent 8bb2c6d188
commit bb2fa73609
5 changed files with 60 additions and 21 deletions

View file

@ -51,6 +51,7 @@ class BaseLLMException(Exception):
headers: Optional[Union[dict, httpx.Headers]] = None,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
body: Optional[dict] = None,
):
self.status_code = status_code
self.message: str = message
@ -67,6 +68,7 @@ class BaseLLMException(Exception):
self.response = httpx.Response(
status_code=status_code, request=self.request
)
self.body = body
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs

View file

@ -19,6 +19,7 @@ class OpenAIError(BaseLLMException):
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
headers: Optional[Union[dict, httpx.Headers]] = None,
body: Optional[dict] = None,
):
self.status_code = status_code
self.message = message
@ -39,6 +40,7 @@ class OpenAIError(BaseLLMException):
headers=self.headers,
request=self.request,
response=self.response,
body=body,
)

View file

@ -828,13 +828,17 @@ class OpenAIChatCompletion(BaseLLM):
except Exception as e:
exception_response = getattr(e, "response", None)
status_code = getattr(e, "status_code", 500)
exception_body = getattr(e, "body", None)
error_headers = getattr(e, "headers", None)
if error_headers is None and exception_response:
error_headers = getattr(exception_response, "headers", None)
message = getattr(e, "message", str(e))
raise OpenAIError(
status_code=status_code, message=message, headers=error_headers
status_code=status_code,
message=message,
headers=error_headers,
body=exception_body,
)
def streaming(

View file

@ -6057,26 +6057,6 @@
"mode": "chat",
"supports_tool_choice": true
},
"jamba-large-1.6": {
"max_tokens": 256000,
"max_input_tokens": 256000,
"max_output_tokens": 256000,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000008,
"litellm_provider": "ai21",
"mode": "chat",
"supports_tool_choice": true
},
"jamba-mini-1.6": {
"max_tokens": 256000,
"max_input_tokens": 256000,
"max_output_tokens": 256000,
"input_cost_per_token": 0.0000002,
"output_cost_per_token": 0.0000004,
"litellm_provider": "ai21",
"mode": "chat",
"supports_tool_choice": true
},
"jamba-1.5-mini": {
"max_tokens": 256000,
"max_input_tokens": 256000,
@ -6097,6 +6077,26 @@
"mode": "chat",
"supports_tool_choice": true
},
"jamba-large-1.6": {
"max_tokens": 256000,
"max_input_tokens": 256000,
"max_output_tokens": 256000,
"input_cost_per_token": 0.000002,
"output_cost_per_token": 0.000008,
"litellm_provider": "ai21",
"mode": "chat",
"supports_tool_choice": true
},
"jamba-mini-1.6": {
"max_tokens": 256000,
"max_input_tokens": 256000,
"max_output_tokens": 256000,
"input_cost_per_token": 0.0000002,
"output_cost_per_token": 0.0000004,
"litellm_provider": "ai21",
"mode": "chat",
"supports_tool_choice": true
},
"j2-mid": {
"max_tokens": 8192,
"max_input_tokens": 8192,

View file

@ -391,3 +391,34 @@ def test_openai_chat_completion_streaming_handler_reasoning_content():
)
assert response.choices[0].delta.reasoning_content == "."
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.parametrize("stream_mode", [True, False])
@pytest.mark.asyncio
async def test_exception_bubbling_up(sync_mode, stream_mode):
"""
make sure code, param, and type are bubbled up
"""
import litellm
litellm.set_verbose = True
with pytest.raises(Exception) as exc_info:
if sync_mode:
litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "usera", "content": "hi"}],
stream=stream_mode,
sync_stream=sync_mode,
)
else:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[{"role": "usera", "content": "hi"}],
stream=stream_mode,
sync_stream=sync_mode,
)
assert exc_info.value.code == "invalid_request_error"
assert exc_info.value.param == "messages"
assert exc_info.value.type == "invalid_request_error"