mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
remove init AnthropicClient for completion calls
This commit is contained in:
parent
2dc1c35a05
commit
bc065f08df
2 changed files with 119 additions and 136 deletions
|
@ -1,16 +1,15 @@
|
||||||
import os, json
|
import os
|
||||||
|
import json
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
import requests
|
import requests
|
||||||
import time
|
import time
|
||||||
from typing import Callable
|
from typing import Callable
|
||||||
from litellm.utils import ModelResponse
|
from litellm.utils import ModelResponse
|
||||||
|
|
||||||
|
|
||||||
class AnthropicConstants(Enum):
|
class AnthropicConstants(Enum):
|
||||||
HUMAN_PROMPT = "\n\nHuman:"
|
HUMAN_PROMPT = "\n\nHuman:"
|
||||||
AI_PROMPT = "\n\nAssistant:"
|
AI_PROMPT = "\n\nAssistant:"
|
||||||
|
|
||||||
|
|
||||||
class AnthropicError(Exception):
|
class AnthropicError(Exception):
|
||||||
def __init__(self, status_code, message):
|
def __init__(self, status_code, message):
|
||||||
self.status_code = status_code
|
self.status_code = status_code
|
||||||
|
@ -19,132 +18,120 @@ class AnthropicError(Exception):
|
||||||
self.message
|
self.message
|
||||||
) # Call the base class constructor with the parameters it needs
|
) # Call the base class constructor with the parameters it needs
|
||||||
|
|
||||||
|
# makes headers for API call
|
||||||
class AnthropicLLM:
|
def validate_environment(api_key):
|
||||||
def __init__(
|
if api_key is None:
|
||||||
self, encoding, default_max_tokens_to_sample, logging_obj, api_key=None
|
raise ValueError(
|
||||||
):
|
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
|
||||||
self.encoding = encoding
|
|
||||||
self.default_max_tokens_to_sample = default_max_tokens_to_sample
|
|
||||||
self.completion_url = "https://api.anthropic.com/v1/complete"
|
|
||||||
self.api_key = api_key
|
|
||||||
self.logging_obj = logging_obj
|
|
||||||
self.validate_environment(api_key=api_key)
|
|
||||||
|
|
||||||
def validate_environment(
|
|
||||||
self, api_key
|
|
||||||
): # set up the environment required to run the model
|
|
||||||
# set the api key
|
|
||||||
if self.api_key == None:
|
|
||||||
raise ValueError(
|
|
||||||
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
|
|
||||||
)
|
|
||||||
self.api_key = api_key
|
|
||||||
self.headers = {
|
|
||||||
"accept": "application/json",
|
|
||||||
"anthropic-version": "2023-06-01",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"x-api-key": self.api_key,
|
|
||||||
}
|
|
||||||
|
|
||||||
def completion(
|
|
||||||
self,
|
|
||||||
model: str,
|
|
||||||
messages: list,
|
|
||||||
model_response: ModelResponse,
|
|
||||||
print_verbose: Callable,
|
|
||||||
optional_params=None,
|
|
||||||
litellm_params=None,
|
|
||||||
logger_fn=None,
|
|
||||||
): # logic for parsing in - calling - parsing out model completion calls
|
|
||||||
model = model
|
|
||||||
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
|
|
||||||
for message in messages:
|
|
||||||
if "role" in message:
|
|
||||||
if message["role"] == "user":
|
|
||||||
prompt += (
|
|
||||||
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
prompt += (
|
|
||||||
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
|
||||||
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
|
||||||
if "max_tokens" in optional_params and optional_params["max_tokens"] != float(
|
|
||||||
"inf"
|
|
||||||
):
|
|
||||||
max_tokens = optional_params["max_tokens"]
|
|
||||||
else:
|
|
||||||
max_tokens = self.default_max_tokens_to_sample
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"prompt": prompt,
|
|
||||||
"max_tokens_to_sample": max_tokens,
|
|
||||||
**optional_params,
|
|
||||||
}
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
self.logging_obj.pre_call(
|
|
||||||
input=prompt,
|
|
||||||
api_key=self.api_key,
|
|
||||||
additional_args={"complete_input_dict": data},
|
|
||||||
)
|
)
|
||||||
## COMPLETION CALL
|
headers = {
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
"accept": "application/json",
|
||||||
response = requests.post(
|
"anthropic-version": "2023-06-01",
|
||||||
self.completion_url,
|
"content-type": "application/json",
|
||||||
headers=self.headers,
|
"x-api-key": api_key,
|
||||||
data=json.dumps(data),
|
}
|
||||||
stream=optional_params["stream"],
|
return headers
|
||||||
)
|
|
||||||
return response.iter_lines()
|
def completion(
|
||||||
else:
|
model: str,
|
||||||
response = requests.post(
|
messages: list,
|
||||||
self.completion_url, headers=self.headers, data=json.dumps(data)
|
model_response: ModelResponse,
|
||||||
)
|
print_verbose: Callable,
|
||||||
## LOGGING
|
encoding,
|
||||||
self.logging_obj.post_call(
|
api_key,
|
||||||
input=prompt,
|
logging_obj,
|
||||||
api_key=self.api_key,
|
optional_params=None,
|
||||||
original_response=response.text,
|
litellm_params=None,
|
||||||
additional_args={"complete_input_dict": data},
|
logger_fn=None,
|
||||||
)
|
):
|
||||||
print_verbose(f"raw model_response: {response.text}")
|
headers = validate_environment(api_key)
|
||||||
## RESPONSE OBJECT
|
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
|
||||||
try:
|
for message in messages:
|
||||||
completion_response = response.json()
|
if "role" in message:
|
||||||
except:
|
if message["role"] == "user":
|
||||||
raise AnthropicError(message=response.text, status_code=response.status_code)
|
prompt += (
|
||||||
if "error" in completion_response:
|
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
||||||
raise AnthropicError(
|
|
||||||
message=str(completion_response["error"]),
|
|
||||||
status_code=response.status_code,
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
model_response["choices"][0]["message"][
|
prompt += (
|
||||||
"content"
|
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
|
||||||
] = completion_response["completion"]
|
)
|
||||||
|
else:
|
||||||
|
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
||||||
|
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
||||||
|
if "max_tokens" in optional_params and optional_params["max_tokens"] != float("inf"):
|
||||||
|
max_tokens = optional_params["max_tokens"]
|
||||||
|
else:
|
||||||
|
max_tokens = 256 # required anthropic param, default to 256 if user does not provide an input
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"prompt": prompt,
|
||||||
|
"max_tokens_to_sample": max_tokens,
|
||||||
|
**optional_params,
|
||||||
|
}
|
||||||
|
|
||||||
## CALCULATING USAGE
|
## LOGGING
|
||||||
prompt_tokens = len(
|
logging_obj.pre_call(
|
||||||
self.encoding.encode(prompt)
|
input=prompt,
|
||||||
) ##[TODO] use the anthropic tokenizer here
|
api_key=api_key,
|
||||||
completion_tokens = len(
|
additional_args={"complete_input_dict": data},
|
||||||
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
)
|
||||||
) ##[TODO] use the anthropic tokenizer here
|
|
||||||
|
## COMPLETION CALL
|
||||||
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
|
response = requests.post(
|
||||||
|
"https://api.anthropic.com/v1/complete",
|
||||||
|
headers=headers,
|
||||||
|
data=json.dumps(data),
|
||||||
|
stream=optional_params["stream"],
|
||||||
|
)
|
||||||
|
return response.iter_lines()
|
||||||
|
else:
|
||||||
|
response = requests.post(
|
||||||
|
"https://api.anthropic.com/v1/complete", headers=headers, data=json.dumps(data)
|
||||||
|
)
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=prompt,
|
||||||
|
api_key=api_key,
|
||||||
|
original_response=response.text,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
print_verbose(f"raw model_response: {response.text}")
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
try:
|
||||||
|
completion_response = response.json()
|
||||||
|
except:
|
||||||
|
raise AnthropicError(
|
||||||
|
message=response.text, status_code=response.status_code
|
||||||
|
)
|
||||||
|
if "error" in completion_response:
|
||||||
|
raise AnthropicError(
|
||||||
|
message=str(completion_response["error"]),
|
||||||
|
status_code=response.status_code,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
model_response["choices"][0]["message"]["content"] = completion_response[
|
||||||
|
"completion"
|
||||||
|
]
|
||||||
|
|
||||||
model_response["created"] = time.time()
|
## CALCULATING USAGE
|
||||||
model_response["model"] = model
|
prompt_tokens = len(
|
||||||
model_response["usage"] = {
|
encoding.encode(prompt)
|
||||||
"prompt_tokens": prompt_tokens,
|
) ##[TODO] use the anthropic tokenizer here
|
||||||
"completion_tokens": completion_tokens,
|
completion_tokens = len(
|
||||||
"total_tokens": prompt_tokens + completion_tokens,
|
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||||
}
|
) ##[TODO] use the anthropic tokenizer here
|
||||||
return model_response
|
|
||||||
|
|
||||||
def embedding(
|
model_response["created"] = time.time()
|
||||||
self,
|
model_response["model"] = model
|
||||||
): # logic for parsing in - calling - parsing out model embedding calls
|
model_response["usage"] = {
|
||||||
pass
|
"prompt_tokens": prompt_tokens,
|
||||||
|
"completion_tokens": completion_tokens,
|
||||||
|
"total_tokens": prompt_tokens + completion_tokens,
|
||||||
|
}
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
def embedding():
|
||||||
|
# logic for parsing in - calling - parsing out model embedding calls
|
||||||
|
pass
|
||||||
|
|
|
@ -19,7 +19,7 @@ from litellm.utils import (
|
||||||
read_config_args,
|
read_config_args,
|
||||||
completion_with_fallbacks,
|
completion_with_fallbacks,
|
||||||
)
|
)
|
||||||
from .llms.anthropic import AnthropicLLM
|
from .llms import anthropic
|
||||||
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
||||||
from .llms.baseten import BasetenLLM
|
from .llms.baseten import BasetenLLM
|
||||||
from .llms.ai21 import AI21LLM
|
from .llms.ai21 import AI21LLM
|
||||||
|
@ -61,7 +61,6 @@ async def acompletion(*args, **kwargs):
|
||||||
|
|
||||||
|
|
||||||
@client
|
@client
|
||||||
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(2), reraise=True, retry_error_callback=lambda retry_state: setattr(retry_state.outcome, 'retry_variable', litellm.retry)) # retry call, turn this off by setting `litellm.retry = False`
|
|
||||||
@timeout( # type: ignore
|
@timeout( # type: ignore
|
||||||
600
|
600
|
||||||
) ## set timeouts, in case calls hang (e.g. Azure) - default is 600s, override with `force_timeout`
|
) ## set timeouts, in case calls hang (e.g. Azure) - default is 600s, override with `force_timeout`
|
||||||
|
@ -79,7 +78,6 @@ def completion(
|
||||||
max_tokens=float("inf"),
|
max_tokens=float("inf"),
|
||||||
presence_penalty=0,
|
presence_penalty=0,
|
||||||
frequency_penalty=0,
|
frequency_penalty=0,
|
||||||
num_beams=1,
|
|
||||||
logit_bias={},
|
logit_bias={},
|
||||||
user="",
|
user="",
|
||||||
deployment_id=None,
|
deployment_id=None,
|
||||||
|
@ -89,6 +87,7 @@ def completion(
|
||||||
api_key=None,
|
api_key=None,
|
||||||
api_version=None,
|
api_version=None,
|
||||||
force_timeout=600,
|
force_timeout=600,
|
||||||
|
num_beams=1,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
azure=False,
|
azure=False,
|
||||||
|
@ -407,13 +406,7 @@ def completion(
|
||||||
anthropic_key = (
|
anthropic_key = (
|
||||||
api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY")
|
api_key or litellm.anthropic_key or os.environ.get("ANTHROPIC_API_KEY")
|
||||||
)
|
)
|
||||||
anthropic_client = AnthropicLLM(
|
model_response = anthropic.completion(
|
||||||
encoding=encoding,
|
|
||||||
default_max_tokens_to_sample=litellm.max_tokens,
|
|
||||||
api_key=anthropic_key,
|
|
||||||
logging_obj=logging, # model call logging done inside the class as we make need to modify I/O to fit anthropic's requirements
|
|
||||||
)
|
|
||||||
model_response = anthropic_client.completion(
|
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
model_response=model_response,
|
model_response=model_response,
|
||||||
|
@ -421,6 +414,9 @@ def completion(
|
||||||
optional_params=optional_params,
|
optional_params=optional_params,
|
||||||
litellm_params=litellm_params,
|
litellm_params=litellm_params,
|
||||||
logger_fn=logger_fn,
|
logger_fn=logger_fn,
|
||||||
|
encoding=encoding, # for calculating input/output tokens
|
||||||
|
api_key=anthropic_key,
|
||||||
|
logging_obj=logging,
|
||||||
)
|
)
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
# don't try to access stream object,
|
# don't try to access stream object,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue