adding anthropic llm class - handles sync + stream

This commit is contained in:
Krrish Dholakia 2023-08-12 16:34:32 -07:00
parent e6da2f8bf7
commit bc767cc42a
27 changed files with 219 additions and 693 deletions

View file

@ -4,11 +4,12 @@ from functools import partial
import dotenv, traceback, random, asyncio, time
from copy import deepcopy
import litellm
from litellm import client, logging, exception_type, timeout, get_optional_params
from litellm import client, logging, exception_type, timeout, get_optional_params, get_litellm_params
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args
from .llms.anthropic import AnthropicLLM
import tiktoken
from concurrent.futures import ThreadPoolExecutor
encoding = tiktoken.get_encoding("cl100k_base")
from litellm.utils import get_secret, install_and_import, CustomStreamWrapper, read_config_args
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
new_response = {
@ -38,14 +39,13 @@ async def acompletion(*args, **kwargs):
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(2), reraise=True, retry_error_callback=lambda retry_state: setattr(retry_state.outcome, 'retry_variable', litellm.retry)) # retry call, turn this off by setting `litellm.retry = False`
@timeout(600) ## set timeouts, in case calls hang (e.g. Azure) - default is 60s, override with `force_timeout`
def completion(
messages, model="gpt-3.5-turbo",# required params
model, messages,# required params
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
functions=[], function_call="", # optional params
temperature=1, top_p=1, n=1, stream=False, stop=None, max_tokens=float('inf'),
presence_penalty=0, frequency_penalty=0, logit_bias={}, user="", deployment_id=None,
# Optional liteLLM function params
*, return_async=False, api_key=None, force_timeout=600, azure=False, logger_fn=None, verbose=False,
hugging_face = False, replicate=False,together_ai = False, custom_llm_provider=None, custom_api_base=None
*, return_async=False, api_key=None, force_timeout=600, logger_fn=None, verbose=False, custom_llm_provider=None, custom_api_base=None
):
try:
global new_response
@ -57,9 +57,15 @@ def completion(
temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens,
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user, deployment_id=deployment_id,
# params to identify the model
model=model, replicate=replicate, hugging_face=hugging_face, together_ai=together_ai
model=model, custom_llm_provider=custom_llm_provider
)
if azure == True or custom_llm_provider == "azure": # [TODO]: remove azure=True flag, move to 'custom_llm_provider' approach
# For logging - save the values of the litellm-specific params passed in
litellm_params = get_litellm_params(
return_async=return_async, api_key=api_key, force_timeout=force_timeout,
logger_fn=logger_fn, verbose=verbose, custom_llm_provider=custom_llm_provider,
custom_api_base=custom_api_base)
if custom_llm_provider == "azure":
# azure configs
openai.api_type = "azure"
openai.api_base = litellm.api_base if litellm.api_base is not None else get_secret("AZURE_API_BASE")
@ -72,7 +78,7 @@ def completion(
else:
openai.api_key = get_secret("AZURE_API_KEY")
## LOGGING
logging(model=model, input=messages, additional_args=optional_params, azure=azure, logger_fn=logger_fn)
logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
@ -102,7 +108,7 @@ def completion(
else:
openai.api_key = get_secret("OPENAI_API_KEY")
## LOGGING
logging(model=model, input=messages, additional_args=args, azure=azure, logger_fn=logger_fn)
logging(model=model, input=messages, additional_args=args, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
@ -131,7 +137,7 @@ def completion(
openai.organization = litellm.organization
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, additional_args=optional_params, azure=azure, logger_fn=logger_fn)
logging(model=model, input=prompt, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
## COMPLETION CALL
if litellm.headers:
response = openai.Completion.create(
@ -146,14 +152,14 @@ def completion(
)
completion_response = response["choices"]["text"]
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = response["created"]
model_response["model"] = model
model_response["usage"] = response["usage"]
response = model_response
elif "replicate" in model or replicate == True or custom_llm_provider == "replicate":
elif "replicate" in model or custom_llm_provider == "replicate":
# import replicate/if it fails then pip install replicate
install_and_import("replicate")
import replicate
@ -168,11 +174,11 @@ def completion(
os.environ["REPLICATE_API_TOKEN"] = litellm.replicate_key
prompt = " ".join([message["content"] for message in messages])
input = {"prompt": prompt}
if max_tokens != float('inf'):
if "max_tokens" in optional_params:
input["max_length"] = max_tokens # for t5 models
input["max_new_tokens"] = max_tokens # for llama2 models
## LOGGING
logging(model=model, input=input, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
logging(model=model, input=input, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
## COMPLETION CALL
output = replicate.run(
model,
@ -187,7 +193,7 @@ def completion(
response += item
completion_response = response
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
@ -201,59 +207,13 @@ def completion(
}
response = model_response
elif model in litellm.anthropic_models:
# import anthropic/if it fails then pip install anthropic
install_and_import("anthropic")
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
if api_key:
os.environ["ANTHROPIC_API_KEY"] = api_key
elif litellm.anthropic_key:
os.environ["ANTHROPIC_API_KEY"] = litellm.anthropic_key
prompt = f"{HUMAN_PROMPT}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{HUMAN_PROMPT}{message['content']}"
else:
prompt += f"{AI_PROMPT}{message['content']}"
else:
prompt += f"{HUMAN_PROMPT}{message['content']}"
prompt += f"{AI_PROMPT}"
anthropic = Anthropic()
if max_tokens != float('inf'):
max_tokens_to_sample = max_tokens
else:
max_tokens_to_sample = litellm.max_tokens # default in Anthropic docs https://docs.anthropic.com/claude/reference/client-libraries
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
## COMPLETION CALL
completion = anthropic.completions.create(
model=model,
prompt=prompt,
max_tokens_to_sample=max_tokens_to_sample,
**optional_params
)
anthropic_key = api_key if api_key is not None else litellm.anthropic_key
anthropic_client = AnthropicLLM(default_max_tokens_to_sample=litellm.max_tokens, api_key=anthropic_key)
model_response = anthropic_client.completion(model=model, messages=messages, model_response=model_response, print_verbose=print_verbose, optional_params=optional_params, litellm_params=litellm_params, logger_fn=logger_fn)
if 'stream' in optional_params and optional_params['stream'] == True:
# don't try to access stream object,
response = CustomStreamWrapper(completion, model)
response = CustomStreamWrapper(model_response, model)
return response
completion_response = completion.completion
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
prompt_tokens = anthropic.count_tokens(prompt)
completion_tokens = anthropic.count_tokens(completion_response)
## RESPONSE OBJECT
print_verbose(f"raw model_response: {model_response}")
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
elif model in litellm.openrouter_models or custom_llm_provider == "openrouter":
@ -270,7 +230,7 @@ def completion(
else:
openai.api_key = get_secret("OPENROUTER_API_KEY")
## LOGGING
logging(model=model, input=messages, additional_args=optional_params, azure=azure, logger_fn=logger_fn)
logging(model=model, input=messages, additional_args=optional_params, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
## COMPLETION CALL
if litellm.headers:
response = openai.ChatCompletion.create(
@ -311,7 +271,7 @@ def completion(
co = cohere.Client(cohere_key)
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
## COMPLETION CALL
response = co.generate(
model=model,
@ -364,7 +324,7 @@ def completion(
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
elif together_ai == True or custom_llm_provider == "together_ai":
elif custom_llm_provider == "together_ai":
import requests
TOGETHER_AI_TOKEN = get_secret("TOGETHER_AI_TOKEN")
headers = {"Authorization": f"Bearer {TOGETHER_AI_TOKEN}"}
@ -410,7 +370,7 @@ def completion(
prompt = " ".join([message["content"] for message in messages])
## LOGGING
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
chat_model = ChatModel.from_pretrained(model)
@ -419,7 +379,7 @@ def completion(
completion_response = chat.send_message(prompt, **optional_params)
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
logging(model=model, input=prompt, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
@ -428,13 +388,13 @@ def completion(
response = model_response
else:
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, logger_fn=logger_fn)
args = locals()
raise ValueError(f"Invalid completion model args passed in. Check your input - {args}")
return response
except Exception as e:
## LOGGING
logging(model=model, input=messages, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn, exception=e)
logging(model=model, input=messages, custom_llm_provider=custom_llm_provider, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn, exception=e)
## Map to OpenAI Exception
raise exception_type(model=model, original_exception=e)