mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
Merge branch 'main' into litellm_anthropic_api_streaming
This commit is contained in:
commit
bca71019ad
19 changed files with 1195 additions and 40 deletions
|
@ -124,7 +124,7 @@ ft_job = await client.fine_tuning.jobs.create(
|
|||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="curl" label="curl">
|
||||
<TabItem value="curl" label="curl (Unified API)">
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/v1/fine_tuning/jobs \
|
||||
|
@ -136,6 +136,28 @@ curl http://localhost:4000/v1/fine_tuning/jobs \
|
|||
"training_file": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
|
||||
}'
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="curl-vtx" label="curl (VertexAI API)">
|
||||
|
||||
:::info
|
||||
|
||||
Use this to create Fine tuning Jobs in [the Vertex AI API Format](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#create-tuning)
|
||||
|
||||
:::
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/v1/projects/tuningJobs \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{
|
||||
"baseModel": "gemini-1.0-pro-002",
|
||||
"supervisedTuningSpec" : {
|
||||
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
|
|
@ -17,7 +17,33 @@ You can use litellm through either:
|
|||
1. [LiteLLM Proxy Server](#openai-proxy) - Server to call 100+ LLMs, load balance, cost tracking across projects
|
||||
2. [LiteLLM python SDK](#basic-usage) - Python Client to call 100+ LLMs, load balance, cost tracking
|
||||
|
||||
## LiteLLM Python SDK
|
||||
### When to use LiteLLM Proxy Server
|
||||
|
||||
:::tip
|
||||
|
||||
Use LiteLLM Proxy Server if you want a **central service to access multiple LLMs**
|
||||
|
||||
Typically used by Gen AI Enablement / ML PLatform Teams
|
||||
|
||||
:::
|
||||
|
||||
- LiteLLM Proxy gives you a unified interface to access multiple LLMs (100+ LLMs)
|
||||
- Track LLM Usage and setup guardrails
|
||||
- Customize Logging, Guardrails, Caching per project
|
||||
|
||||
### When to use LiteLLM Python SDK
|
||||
|
||||
:::tip
|
||||
|
||||
Use LiteLLM Python SDK if you want to use LiteLLM in your **python code**
|
||||
|
||||
Typically used by developers building llm projects
|
||||
|
||||
:::
|
||||
|
||||
- LiteLLM SDK gives you a unified interface to access multiple LLMs (100+ LLMs)
|
||||
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - [Router](https://docs.litellm.ai/docs/routing)
|
||||
|
||||
|
||||
### Basic usage
|
||||
|
||||
|
|
|
@ -50,7 +50,7 @@ Detailed information about [routing strategies can be found here](../routing)
|
|||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
### Test - Load Balancing
|
||||
### Test - Simple Call
|
||||
|
||||
Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo
|
||||
|
||||
|
@ -138,6 +138,27 @@ print(response)
|
|||
</Tabs>
|
||||
|
||||
|
||||
### Test - Loadbalancing
|
||||
|
||||
In this request, the following will occur:
|
||||
1. A rate limit exception will be raised
|
||||
2. LiteLLM proxy will retry the request on the model group (default is 3).
|
||||
|
||||
```bash
|
||||
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer sk-1234' \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{"role": "user", "content": "Hi there!"}
|
||||
],
|
||||
"mock_testing_rate_limit_error": true
|
||||
}'
|
||||
```
|
||||
|
||||
[**See Code**](https://github.com/BerriAI/litellm/blob/6b8806b45f970cb2446654d2c379f8dcaa93ce3c/litellm/router.py#L2535)
|
||||
|
||||
### Test - Client Side Fallbacks
|
||||
In this request the following will occur:
|
||||
1. The request to `model="zephyr-beta"` will fail
|
||||
|
|
|
@ -23,6 +23,9 @@ LiteLLM Proxy is **Azure OpenAI-compatible**:
|
|||
LiteLLM Proxy is **Anthropic-compatible**:
|
||||
* /messages
|
||||
|
||||
LiteLLM Proxy is **Vertex AI compatible**:
|
||||
- [Supports ALL Vertex Endpoints](../vertex_ai)
|
||||
|
||||
This doc covers:
|
||||
|
||||
* /chat/completion
|
||||
|
|
93
docs/my-website/docs/vertex_ai.md
Normal file
93
docs/my-website/docs/vertex_ai.md
Normal file
|
@ -0,0 +1,93 @@
|
|||
# [BETA] Vertex AI Endpoints
|
||||
|
||||
## Supported API Endpoints
|
||||
|
||||
- Gemini API
|
||||
- Embeddings API
|
||||
- Imagen API
|
||||
- Code Completion API
|
||||
- Batch prediction API
|
||||
- Tuning API
|
||||
- CountTokens API
|
||||
|
||||
## Quick Start Usage
|
||||
|
||||
#### 1. Set `default_vertex_config` on your `config.yaml`
|
||||
|
||||
|
||||
Add the following credentials to your litellm config.yaml to use the Vertex AI endpoints.
|
||||
|
||||
```yaml
|
||||
default_vertex_config:
|
||||
vertex_project: "adroit-crow-413218"
|
||||
vertex_location: "us-central1"
|
||||
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json" # Add path to service account.json
|
||||
```
|
||||
|
||||
#### 2. Start litellm proxy
|
||||
|
||||
```shell
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
#### 3. Test it
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:countTokens \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"content": "gm"}]}'
|
||||
```
|
||||
## Usage Examples
|
||||
|
||||
### Gemini API (Generate Content)
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
### Embeddings API
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"content": "gm"}]}'
|
||||
```
|
||||
|
||||
### Imagen API
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/imagen-3.0-generate-001:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'
|
||||
```
|
||||
|
||||
### Count Tokens API
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
### Tuning API
|
||||
|
||||
Create Fine Tuning Job
|
||||
|
||||
```shell
|
||||
curl http://localhost:4000/vertex-ai/tuningJobs \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{
|
||||
"baseModel": "gemini-1.0-pro-002",
|
||||
"supervisedTuningSpec" : {
|
||||
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
|
||||
}
|
||||
}'
|
||||
```
|
|
@ -24,7 +24,7 @@ const sidebars = {
|
|||
link: {
|
||||
type: "generated-index",
|
||||
title: "💥 LiteLLM Proxy Server",
|
||||
description: `Proxy Server to call 100+ LLMs in a unified interface & track spend, set budgets per virtual key/user`,
|
||||
description: `OpenAI Proxy Server to call 100+ LLMs in a unified interface & track spend, set budgets per virtual key/user`,
|
||||
slug: "/simple_proxy",
|
||||
},
|
||||
items: [
|
||||
|
@ -178,7 +178,7 @@ const sidebars = {
|
|||
},
|
||||
{
|
||||
type: "category",
|
||||
label: "Embedding(), Image Generation(), Assistants(), Moderation(), Audio Transcriptions(), TTS(), Batches(), Fine-Tuning()",
|
||||
label: "Supported Endpoints - /images, /audio/speech, /assistants etc",
|
||||
items: [
|
||||
"embedding/supported_embedding",
|
||||
"embedding/async_embedding",
|
||||
|
@ -189,7 +189,8 @@ const sidebars = {
|
|||
"assistants",
|
||||
"batches",
|
||||
"fine_tuning",
|
||||
"anthropic_completion"
|
||||
"anthropic_completion",
|
||||
"vertex_ai"
|
||||
],
|
||||
},
|
||||
{
|
||||
|
|
|
@ -240,3 +240,59 @@ class VertexFineTuningAPI(VertexLLM):
|
|||
vertex_response
|
||||
)
|
||||
return open_ai_response
|
||||
|
||||
async def pass_through_vertex_ai_POST_request(
|
||||
self,
|
||||
request_data: dict,
|
||||
vertex_project: str,
|
||||
vertex_location: str,
|
||||
vertex_credentials: str,
|
||||
request_route: str,
|
||||
):
|
||||
auth_header, _ = self._get_token_and_url(
|
||||
model="",
|
||||
gemini_api_key=None,
|
||||
vertex_credentials=vertex_credentials,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
stream=False,
|
||||
custom_llm_provider="vertex_ai_beta",
|
||||
api_base="",
|
||||
)
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {auth_header}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
url = None
|
||||
if request_route == "/tuningJobs":
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs"
|
||||
elif "/tuningJobs/" in request_route and "cancel" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/tuningJobs{request_route}"
|
||||
elif "generateContent" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
elif "predict" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
elif "/batchPredictionJobs" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
elif "countTokens" in request_route:
|
||||
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}{request_route}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported Vertex AI request route: {request_route}")
|
||||
if self.async_handler is None:
|
||||
raise ValueError("VertexAI Fine Tuning - async_handler is not initialized")
|
||||
|
||||
response = await self.async_handler.post(
|
||||
headers=headers,
|
||||
url=url,
|
||||
json=request_data, # type: ignore
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"Error creating fine tuning job. Status code: {response.status_code}. Response: {response.text}"
|
||||
)
|
||||
|
||||
response_json = response.json()
|
||||
return response_json
|
||||
|
|
|
@ -5101,23 +5101,27 @@ def stream_chunk_builder(
|
|||
combined_content = ""
|
||||
combined_arguments = ""
|
||||
|
||||
if (
|
||||
"tool_calls" in chunks[0]["choices"][0]["delta"]
|
||||
and chunks[0]["choices"][0]["delta"]["tool_calls"] is not None
|
||||
):
|
||||
tool_call_chunks = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if "tool_calls" in chunk["choices"][0]["delta"]
|
||||
and chunk["choices"][0]["delta"]["tool_calls"] is not None
|
||||
]
|
||||
|
||||
if len(tool_call_chunks) > 0:
|
||||
argument_list = []
|
||||
delta = chunks[0]["choices"][0]["delta"]
|
||||
delta = tool_call_chunks[0]["choices"][0]["delta"]
|
||||
message = response["choices"][0]["message"]
|
||||
message["tool_calls"] = []
|
||||
id = None
|
||||
name = None
|
||||
type = None
|
||||
tool_calls_list = []
|
||||
prev_index = 0
|
||||
prev_index = None
|
||||
prev_id = None
|
||||
curr_id = None
|
||||
curr_index = 0
|
||||
for chunk in chunks:
|
||||
for chunk in tool_call_chunks:
|
||||
choices = chunk["choices"]
|
||||
for choice in choices:
|
||||
delta = choice.get("delta", {})
|
||||
|
@ -5139,6 +5143,8 @@ def stream_chunk_builder(
|
|||
name = tool_calls[0].function.name
|
||||
if tool_calls[0].type:
|
||||
type = tool_calls[0].type
|
||||
if prev_index is None:
|
||||
prev_index = curr_index
|
||||
if curr_index != prev_index: # new tool call
|
||||
combined_arguments = "".join(argument_list)
|
||||
tool_calls_list.append(
|
||||
|
@ -5157,18 +5163,24 @@ def stream_chunk_builder(
|
|||
tool_calls_list.append(
|
||||
{
|
||||
"id": id,
|
||||
"index": curr_index,
|
||||
"function": {"arguments": combined_arguments, "name": name},
|
||||
"type": type,
|
||||
}
|
||||
)
|
||||
response["choices"][0]["message"]["content"] = None
|
||||
response["choices"][0]["message"]["tool_calls"] = tool_calls_list
|
||||
elif (
|
||||
"function_call" in chunks[0]["choices"][0]["delta"]
|
||||
and chunks[0]["choices"][0]["delta"]["function_call"] is not None
|
||||
):
|
||||
|
||||
function_call_chunks = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if "function_call" in chunk["choices"][0]["delta"]
|
||||
and chunk["choices"][0]["delta"]["function_call"] is not None
|
||||
]
|
||||
|
||||
if len(function_call_chunks) > 0:
|
||||
argument_list = []
|
||||
delta = chunks[0]["choices"][0]["delta"]
|
||||
delta = function_call_chunks[0]["choices"][0]["delta"]
|
||||
function_call = delta.get("function_call", "")
|
||||
function_call_name = function_call.name
|
||||
|
||||
|
@ -5176,7 +5188,7 @@ def stream_chunk_builder(
|
|||
message["function_call"] = {}
|
||||
message["function_call"]["name"] = function_call_name
|
||||
|
||||
for chunk in chunks:
|
||||
for chunk in function_call_chunks:
|
||||
choices = chunk["choices"]
|
||||
for choice in choices:
|
||||
delta = choice.get("delta", {})
|
||||
|
@ -5193,7 +5205,15 @@ def stream_chunk_builder(
|
|||
response["choices"][0]["message"]["function_call"][
|
||||
"arguments"
|
||||
] = combined_arguments
|
||||
else:
|
||||
|
||||
content_chunks = [
|
||||
chunk
|
||||
for chunk in chunks
|
||||
if "content" in chunk["choices"][0]["delta"]
|
||||
and chunk["choices"][0]["delta"]["content"] is not None
|
||||
]
|
||||
|
||||
if len(content_chunks) > 0:
|
||||
for chunk in chunks:
|
||||
choices = chunk["choices"]
|
||||
for choice in choices:
|
||||
|
@ -5209,12 +5229,12 @@ def stream_chunk_builder(
|
|||
# Update the "content" field within the response dictionary
|
||||
response["choices"][0]["message"]["content"] = combined_content
|
||||
|
||||
if len(combined_content) > 0:
|
||||
completion_output = combined_content
|
||||
elif len(combined_arguments) > 0:
|
||||
completion_output = combined_arguments
|
||||
else:
|
||||
completion_output = ""
|
||||
if len(combined_content) > 0:
|
||||
completion_output += combined_content
|
||||
if len(combined_arguments) > 0:
|
||||
completion_output += combined_arguments
|
||||
|
||||
# # Update usage information if needed
|
||||
prompt_tokens = 0
|
||||
completion_tokens = 0
|
||||
|
|
|
@ -1,7 +1,10 @@
|
|||
model_list:
|
||||
- model_name: "claude-3-5-sonnet-20240620"
|
||||
- model_name: "gpt-4"
|
||||
litellm_params:
|
||||
model: "claude-3-5-sonnet-20240620"
|
||||
|
||||
# litellm_settings:
|
||||
# failure_callback: ["langfuse"]
|
||||
model: "gpt-4"
|
||||
- model_name: "gpt-4"
|
||||
litellm_params:
|
||||
model: "gpt-4o"
|
||||
- model_name: "gpt-4o-mini"
|
||||
litellm_params:
|
||||
model: "gpt-4o-mini"
|
|
@ -48,6 +48,11 @@ files_settings:
|
|||
- custom_llm_provider: openai
|
||||
api_key: os.environ/OPENAI_API_KEY
|
||||
|
||||
default_vertex_config:
|
||||
vertex_project: "adroit-crow-413218"
|
||||
vertex_location: "us-central1"
|
||||
vertex_credentials: "/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json"
|
||||
|
||||
|
||||
|
||||
general_settings:
|
||||
|
|
|
@ -213,6 +213,8 @@ from litellm.proxy.utils import (
|
|||
send_email,
|
||||
update_spend,
|
||||
)
|
||||
from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import router as vertex_router
|
||||
from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import set_default_vertex_config
|
||||
from litellm.router import (
|
||||
AssistantsTypedDict,
|
||||
Deployment,
|
||||
|
@ -1818,6 +1820,10 @@ class ProxyConfig:
|
|||
files_config = config.get("files_settings", None)
|
||||
set_files_config(config=files_config)
|
||||
|
||||
## default config for vertex ai routes
|
||||
default_vertex_config = config.get("default_vertex_config", None)
|
||||
set_default_vertex_config(config=default_vertex_config)
|
||||
|
||||
## ROUTER SETTINGS (e.g. routing_strategy, ...)
|
||||
router_settings = config.get("router_settings", None)
|
||||
if router_settings and isinstance(router_settings, dict):
|
||||
|
@ -9698,6 +9704,7 @@ def cleanup_router_config_variables():
|
|||
|
||||
app.include_router(router)
|
||||
app.include_router(fine_tuning_router)
|
||||
app.include_router(vertex_router)
|
||||
app.include_router(health_router)
|
||||
app.include_router(key_management_router)
|
||||
app.include_router(internal_user_router)
|
||||
|
|
305
litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py
Normal file
305
litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py
Normal file
|
@ -0,0 +1,305 @@
|
|||
import ast
|
||||
import asyncio
|
||||
import traceback
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import List, Optional
|
||||
|
||||
import fastapi
|
||||
import httpx
|
||||
from fastapi import (
|
||||
APIRouter,
|
||||
Depends,
|
||||
File,
|
||||
Form,
|
||||
Header,
|
||||
HTTPException,
|
||||
Request,
|
||||
Response,
|
||||
UploadFile,
|
||||
status,
|
||||
)
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.batches.main import FileObject
|
||||
from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance
|
||||
from litellm.proxy._types import *
|
||||
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
|
||||
router = APIRouter()
|
||||
default_vertex_config = None
|
||||
|
||||
|
||||
def set_default_vertex_config(config):
|
||||
global default_vertex_config
|
||||
if config is None:
|
||||
return
|
||||
|
||||
if not isinstance(config, dict):
|
||||
raise ValueError("invalid config, vertex default config must be a dictionary")
|
||||
|
||||
if isinstance(config, dict):
|
||||
for key, value in config.items():
|
||||
if isinstance(value, str) and value.startswith("os.environ/"):
|
||||
config[key] = litellm.get_secret(value)
|
||||
|
||||
default_vertex_config = config
|
||||
|
||||
|
||||
def exception_handler(e: Exception):
|
||||
verbose_proxy_logger.error(
|
||||
"litellm.proxy.proxy_server.v1/projects/tuningJobs(): Exception occurred - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
verbose_proxy_logger.debug(traceback.format_exc())
|
||||
if isinstance(e, HTTPException):
|
||||
return ProxyException(
|
||||
message=getattr(e, "message", str(e.detail)),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||
)
|
||||
else:
|
||||
error_msg = f"{str(e)}"
|
||||
return ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
async def execute_post_vertex_ai_request(
|
||||
request: Request,
|
||||
route: str,
|
||||
):
|
||||
from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance
|
||||
|
||||
if default_vertex_config is None:
|
||||
raise ValueError(
|
||||
"Vertex credentials not added on litellm proxy, please add `default_vertex_config` on your config.yaml"
|
||||
)
|
||||
vertex_project = default_vertex_config.get("vertex_project", None)
|
||||
vertex_location = default_vertex_config.get("vertex_location", None)
|
||||
vertex_credentials = default_vertex_config.get("vertex_credentials", None)
|
||||
|
||||
request_data_json = {}
|
||||
body = await request.body()
|
||||
body_str = body.decode()
|
||||
if len(body_str) > 0:
|
||||
try:
|
||||
request_data_json = ast.literal_eval(body_str)
|
||||
except:
|
||||
request_data_json = json.loads(body_str)
|
||||
|
||||
verbose_proxy_logger.debug(
|
||||
"Request received by LiteLLM:\n{}".format(
|
||||
json.dumps(request_data_json, indent=4)
|
||||
),
|
||||
)
|
||||
|
||||
response = (
|
||||
await vertex_fine_tuning_apis_instance.pass_through_vertex_ai_POST_request(
|
||||
request_data=request_data_json,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
request_route=route,
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/publishers/google/models/{model_id:path}:generateContent",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_generate_content(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
model_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /generateContent endpoint
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#rest
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/publishers/google/models/{model_id}:generateContent",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/publishers/google/models/{model_id:path}:predict",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_predict_endpoint(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
model_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /predict endpoint
|
||||
Use this for:
|
||||
- Embeddings API - Text Embedding, Multi Modal Embedding
|
||||
- Imagen API
|
||||
- Code Completion API
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/textembedding-gecko@001:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"instances":[{"content": "gm"}]}'
|
||||
```
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#generative-ai-get-text-embedding-drest
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/publishers/google/models/{model_id}:predict",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/publishers/google/models/{model_id:path}:countTokens",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_countTokens_endpoint(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
model_id: str,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /countTokens endpoint
|
||||
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/count-tokens#curl
|
||||
|
||||
|
||||
Example Curl:
|
||||
```
|
||||
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
|
||||
```
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/publishers/google/models/{model_id}:countTokens",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/batchPredictionJobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_create_batch_prediction_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /batchPredictionJobs endpoint
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/batch-prediction-api#syntax
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route="/batchPredictionJobs",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/tuningJobs",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_create_fine_tuning_job(
|
||||
request: Request,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. /tuningJobs endpoint
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route="/tuningJobs",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"/vertex-ai/tuningJobs/{job_id:path}:cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["Vertex AI endpoints"],
|
||||
)
|
||||
async def vertex_cancel_fine_tuning_job(
|
||||
request: Request,
|
||||
job_id: str,
|
||||
fastapi_response: Response,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
this is a pass through endpoint for the Vertex AI API. tuningJobs/{job_id:path}:cancel
|
||||
|
||||
Vertex API Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#cancel_a_tuning_job
|
||||
|
||||
it uses the vertex ai credentials on the proxy and forwards to vertex ai api
|
||||
"""
|
||||
try:
|
||||
|
||||
response = await execute_post_vertex_ai_request(
|
||||
request=request,
|
||||
route=f"/tuningJobs/{job_id}:cancel",
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise exception_handler(e) from e
|
|
@ -2468,6 +2468,8 @@ class Router:
|
|||
verbose_router_logger.info(
|
||||
f"No fallback model group found for original model_group={model_group}. Fallbacks={fallbacks}"
|
||||
)
|
||||
if hasattr(original_exception, "message"):
|
||||
original_exception.message += f"No fallback model group found for original model_group={model_group}. Fallbacks={fallbacks}"
|
||||
raise original_exception
|
||||
for mg in fallback_model_group:
|
||||
"""
|
||||
|
@ -2492,14 +2494,20 @@ class Router:
|
|||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
verbose_router_logger.error(f"An exception occurred - {str(e)}")
|
||||
verbose_router_logger.debug(traceback.format_exc())
|
||||
except Exception as new_exception:
|
||||
verbose_router_logger.error(
|
||||
"litellm.router.py::async_function_with_fallbacks() - Error occurred while trying to do fallbacks - {}\n{}\n\nDebug Information:\nCooldown Deployments={}".format(
|
||||
str(new_exception),
|
||||
traceback.format_exc(),
|
||||
await self._async_get_cooldown_deployments_with_debug_info(),
|
||||
)
|
||||
)
|
||||
|
||||
if hasattr(original_exception, "message"):
|
||||
# add the available fallbacks to the exception
|
||||
original_exception.message += "\nReceived Model Group={}\nAvailable Model Group Fallbacks={}".format(
|
||||
model_group, fallback_model_group
|
||||
model_group,
|
||||
fallback_model_group,
|
||||
)
|
||||
raise original_exception
|
||||
|
||||
|
@ -2508,6 +2516,9 @@ class Router:
|
|||
f"Inside async function with retries: args - {args}; kwargs - {kwargs}"
|
||||
)
|
||||
original_function = kwargs.pop("original_function")
|
||||
mock_testing_rate_limit_error = kwargs.pop(
|
||||
"mock_testing_rate_limit_error", None
|
||||
)
|
||||
fallbacks = kwargs.pop("fallbacks", self.fallbacks)
|
||||
context_window_fallbacks = kwargs.pop(
|
||||
"context_window_fallbacks", self.context_window_fallbacks
|
||||
|
@ -2515,13 +2526,25 @@ class Router:
|
|||
content_policy_fallbacks = kwargs.pop(
|
||||
"content_policy_fallbacks", self.content_policy_fallbacks
|
||||
)
|
||||
|
||||
model_group = kwargs.get("model")
|
||||
num_retries = kwargs.pop("num_retries")
|
||||
|
||||
verbose_router_logger.debug(
|
||||
f"async function w/ retries: original_function - {original_function}, num_retries - {num_retries}"
|
||||
)
|
||||
try:
|
||||
if (
|
||||
mock_testing_rate_limit_error is not None
|
||||
and mock_testing_rate_limit_error is True
|
||||
):
|
||||
verbose_router_logger.info(
|
||||
"litellm.router.py::async_function_with_retries() - mock_testing_rate_limit_error=True. Raising litellm.RateLimitError."
|
||||
)
|
||||
raise litellm.RateLimitError(
|
||||
model=model_group,
|
||||
llm_provider="",
|
||||
message=f"This is a mock exception for model={model_group}, to trigger a rate limit error.",
|
||||
)
|
||||
# if the function call is successful, no exception will be raised and we'll break out of the loop
|
||||
response = await original_function(*args, **kwargs)
|
||||
return response
|
||||
|
|
543
litellm/tests/stream_chunk_testdata.py
Normal file
543
litellm/tests/stream_chunk_testdata.py
Normal file
|
@ -0,0 +1,543 @@
|
|||
from litellm.types.utils import (
|
||||
ChatCompletionDeltaToolCall,
|
||||
Delta,
|
||||
Function,
|
||||
ModelResponse,
|
||||
StreamingChoices,
|
||||
)
|
||||
|
||||
chunks = [
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="To answer",
|
||||
role="assistant",
|
||||
function_call=None,
|
||||
tool_calls=None,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" your", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" question about",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=None,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" how", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" many rows are in the ",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=None,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="'users' table, I",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=None,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="'ll", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" need to", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" run", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" a SQL query.",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=None,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" Let", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" me", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" ", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="do that for",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=None,
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=" you.", role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id="toolu_01H3AjkLpRtGQrof13CBnWfK",
|
||||
function=Function(arguments="", name="sql_query"),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments="", name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656356,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments='{"', name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments='query": ', name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments='"SELECT C', name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments="OUNT(*", name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments=") ", name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments="FROM use", name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content="",
|
||||
role=None,
|
||||
function_call=None,
|
||||
tool_calls=[
|
||||
ChatCompletionDeltaToolCall(
|
||||
id=None,
|
||||
function=Function(arguments='rs;"}', name=None),
|
||||
type="function",
|
||||
index=1,
|
||||
)
|
||||
],
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
ModelResponse(
|
||||
id="chatcmpl-634a6ad3-483a-44a1-8cdd-3befbeb4ac2f",
|
||||
choices=[
|
||||
StreamingChoices(
|
||||
finish_reason="tool_calls",
|
||||
index=0,
|
||||
delta=Delta(
|
||||
content=None, role=None, function_call=None, tool_calls=None
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
created=1722656357,
|
||||
model="claude-3-5-sonnet-20240620",
|
||||
object="chat.completion.chunk",
|
||||
system_fingerprint=None,
|
||||
),
|
||||
]
|
|
@ -80,6 +80,9 @@ def test_create_fine_tune_job():
|
|||
except openai.RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
if "Job has already completed" in str(e):
|
||||
return
|
||||
else:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
|
@ -135,7 +138,7 @@ async def test_create_fine_tune_jobs_async():
|
|||
pass
|
||||
except Exception as e:
|
||||
if "Job has already completed" in str(e):
|
||||
pass
|
||||
return
|
||||
else:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
pass
|
||||
|
|
|
@ -7,6 +7,7 @@ import sys
|
|||
import traceback
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from openai.types.image import Image
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
load_dotenv()
|
||||
|
|
|
@ -18,6 +18,8 @@ from openai import OpenAI
|
|||
import litellm
|
||||
from litellm import completion, stream_chunk_builder
|
||||
|
||||
import litellm.tests.stream_chunk_testdata
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
user_message = "What is the current weather in Boston?"
|
||||
|
@ -196,3 +198,24 @@ def test_stream_chunk_builder_litellm_usage_chunks():
|
|||
# assert prompt tokens are the same
|
||||
|
||||
assert gemini_pt == stream_rebuilt_pt
|
||||
|
||||
|
||||
def test_stream_chunk_builder_litellm_mixed_calls():
|
||||
response = stream_chunk_builder(litellm.tests.stream_chunk_testdata.chunks)
|
||||
assert (
|
||||
response.choices[0].message.content
|
||||
== "To answer your question about how many rows are in the 'users' table, I'll need to run a SQL query. Let me do that for you."
|
||||
)
|
||||
|
||||
print(response.choices[0].message.tool_calls[0].to_dict())
|
||||
|
||||
assert len(response.choices[0].message.tool_calls) == 1
|
||||
assert response.choices[0].message.tool_calls[0].to_dict() == {
|
||||
"index": 1,
|
||||
"function": {
|
||||
"arguments": '{"query": "SELECT COUNT(*) FROM users;"}',
|
||||
"name": "sql_query",
|
||||
},
|
||||
"id": "toolu_01H3AjkLpRtGQrof13CBnWfK",
|
||||
"type": "function",
|
||||
}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "1.42.11"
|
||||
version = "1.42.12"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT"
|
||||
|
@ -91,7 +91,7 @@ requires = ["poetry-core", "wheel"]
|
|||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.commitizen]
|
||||
version = "1.42.11"
|
||||
version = "1.42.12"
|
||||
version_files = [
|
||||
"pyproject.toml:^version"
|
||||
]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue