add safe_message trimmer

This commit is contained in:
ishaan-jaff 2023-09-11 17:58:35 -07:00
parent bcb89dcf4a
commit be5a92c40a
2 changed files with 169 additions and 10 deletions

View file

@ -626,17 +626,26 @@ def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
return a100_80gb_price_per_second_public*total_time
def token_counter(model, text):
def token_counter(model="", text=None, messages = None):
# Args:
# text: raw text string passed to model
# messages: List of Dicts passed to completion, messages = [{"role": "user", "content": "hello"}]
# use tiktoken or anthropic's tokenizer depending on the model
if text == None:
if messages != None:
text = " ".join([message["content"] for message in messages])
num_tokens = 0
if "claude" in model:
if model != None and "claude" in model:
try:
import anthropic
except Exception:
Exception("Anthropic import failed please run `pip install anthropic`")
# if importing anthropic fails
# don't raise an exception
num_tokens = len(encoding.encode(text))
return num_tokens
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
anthropic = Anthropic()
num_tokens = anthropic.count_tokens(text)
else:
@ -2352,3 +2361,144 @@ def completion_with_fallbacks(**kwargs):
# print(f"rate_limited_models {rate_limited_models}")
pass
return response
def process_system_message(system_message, max_tokens, model):
system_message_event = {"role": "system", "content": system_message}
system_message_tokens = get_token_count(system_message_event, model)
if system_message_tokens > max_tokens:
print_verbose("`tokentrimmer`: Warning, system message exceeds token limit. Trimming...")
# shorten system message to fit within max_tokens
new_system_message = shorten_message_to_fit_limit(system_message_event, max_tokens, model)
system_message_tokens = get_token_count(new_system_message, model)
return system_message_event, max_tokens - system_message_tokens
def process_messages(messages, max_tokens, model):
# Process messages from older to more recent
messages = messages[::-1]
final_messages = []
for message in messages:
final_messages = attempt_message_addition(final_messages, message, max_tokens, model)
return final_messages
def attempt_message_addition(final_messages, message, max_tokens, model):
temp_messages = [message] + final_messages
temp_message_tokens = get_token_count(messages=temp_messages, model=model)
if temp_message_tokens <= max_tokens:
return temp_messages
# if temp_message_tokens > max_tokens, try shortening temp_messages
elif "function_call" not in message:
# fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
updated_message = shorten_message_to_fit_limit(message, temp_message_tokens - max_tokens, model)
if can_add_message(updated_message, final_messages, max_tokens, model):
return [updated_message] + final_messages
return final_messages
def can_add_message(message, messages, max_tokens, model):
if get_token_count(messages + [message], model) <= max_tokens:
return True
return False
def get_token_count(messages, model):
return token_counter(model=model, messages=messages)
def shorten_message_to_fit_limit(
message,
tokens_needed,
model):
"""
Shorten a message to fit within a token limit by removing characters from the middle.
"""
content = message["content"]
while True:
total_tokens = get_token_count([message], model)
if total_tokens <= tokens_needed:
break
ratio = (tokens_needed) / total_tokens
new_length = int(len(content) * ratio)
print_verbose(new_length)
half_length = new_length // 2
left_half = content[:half_length]
right_half = content[-half_length:]
trimmed_content = left_half + '..' + right_half
message["content"] = trimmed_content
content = trimmed_content
return message
# LiteLLM token trimmer
# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
# Credits for this code go to Killian Lucas
def safe_messages(
messages,
model = None,
system_message = None,
trim_ratio: float = 0.75,
return_response_tokens: bool = False,
max_tokens = None
):
"""
Trim a list of messages to fit within a model's token limit.
Args:
messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
model: The LiteLLM model being used (determines the token limit).
system_message: Optional system message to preserve at the start of the conversation.
trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.
Returns:
Trimmed messages and optionally the number of tokens available for response.
"""
# Initialize max_tokens
# if users pass in max tokens, trim to this amount
try:
if max_tokens == None:
# Check if model is valid
if model in litellm.model_cost:
max_tokens_for_model = litellm.model_cost[model]['max_tokens']
max_tokens = int(max_tokens_for_model * trim_ratio)
else:
# if user did not specify max tokens
# or passed an llm litellm does not know
# do nothing, just return messages
return
current_tokens = token_counter(model=model, messages=messages)
# Do nothing if current tokens under messages
if current_tokens < max_tokens:
return messages
#### Trimming messages if current_tokens > max_tokens
print_verbose(f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}")
if system_message:
system_message_event, max_tokens = process_system_message(messages=messages, max_tokens=max_tokens, model=model)
final_messages = process_messages(messages=messages, max_tokens=max_tokens, model=model)
if system_message:
final_messages = [system_message_event] + final_messages
if return_response_tokens: # if user wants token count with new trimmed messages
response_tokens = max_tokens - get_token_count(final_messages, model)
return final_messages, response_tokens
return final_messages
except: # [NON-Blocking, if error occurs just return final_messages
return messages