add initial support for multimodal_embedding vertex

This commit is contained in:
Ishaan Jaff 2024-08-21 14:29:05 -07:00
parent 710ae63957
commit be6eb52036
2 changed files with 279 additions and 13 deletions

View file

@ -38,12 +38,15 @@ from litellm.types.llms.vertex_ai import (
FunctionDeclaration,
GenerateContentResponseBody,
GenerationConfig,
Instance,
InstanceVideo,
PartType,
RequestBody,
SafetSettingsConfig,
SystemInstructions,
ToolConfig,
Tools,
VertexMultimodalEmbeddingRequest,
)
from litellm.types.utils import GenericStreamingChunk
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
@ -1537,6 +1540,253 @@ class VertexLLM(BaseLLM):
return model_response
def multimodal_embedding(
self,
model: str,
input: Union[list, str],
print_verbose,
model_response: litellm.EmbeddingResponse,
optional_params: dict,
api_key: Optional[str] = None,
logging_obj=None,
encoding=None,
vertex_project=None,
vertex_location=None,
vertex_credentials=None,
aembedding=False,
timeout=300,
client=None,
):
# if aembedding is True:
# return self.aimage_generation(
# prompt=prompt,
# vertex_project=vertex_project,
# vertex_location=vertex_location,
# vertex_credentials=vertex_credentials,
# model=model,
# client=client,
# optional_params=optional_params,
# timeout=timeout,
# logging_obj=logging_obj,
# model_response=model_response,
# )
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
_httpx_timeout = httpx.Timeout(timeout)
_params["timeout"] = _httpx_timeout
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
sync_handler: HTTPHandler = HTTPHandler(**_params) # type: ignore
else:
sync_handler = client # type: ignore
url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{model}:predict"
auth_header, _ = self._ensure_access_token(
credentials=vertex_credentials, project_id=vertex_project
)
optional_params = optional_params or {}
request_data = VertexMultimodalEmbeddingRequest()
vertex_request_instance = Instance(**optional_params)
# if "image" in optional_params:
# vertex_request_instance["image"] = optional_params["image"]
# if "video" in optional_params:
# vertex_request_instance["video"] = optional_params["video"]
# if "text" in optional_params:
# vertex_request_instance["text"] = optional_params["text"]
if isinstance(input, str):
vertex_request_instance["text"] = input
request_data["instances"] = [vertex_request_instance]
request_str = f"\n curl -X POST \\\n -H \"Authorization: Bearer {auth_header[:10] + 'XXXXXXXXXX'}\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d {request_data} \\\n \"{url}\""
logging_obj.pre_call(
input=input,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
logging_obj.pre_call(
input=input,
api_key=None,
additional_args={
"complete_input_dict": optional_params,
"request_str": request_str,
},
)
response = sync_handler.post(
url=url,
headers={
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {auth_header}",
},
data=json.dumps(request_data),
)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code} {response.text}")
"""
Vertex AI Image generation response example:
{
"predictions": [
{
"bytesBase64Encoded": "BASE64_IMG_BYTES",
"mimeType": "image/png"
},
{
"mimeType": "image/png",
"bytesBase64Encoded": "BASE64_IMG_BYTES"
}
]
}
"""
_json_response = response.json()
if "predictions" not in _json_response:
raise litellm.InternalServerError(
message=f"embedding response does not contain 'predictions', got {_json_response}",
llm_provider="vertex_ai",
model=model,
)
_predictions = _json_response["predictions"]
model_response.data = _predictions
model_response.model = model
return model_response
# async def aimage_generation(
# self,
# prompt: str,
# vertex_project: Optional[str],
# vertex_location: Optional[str],
# vertex_credentials: Optional[str],
# model_response: litellm.ImageResponse,
# model: Optional[
# str
# ] = "imagegeneration", # vertex ai uses imagegeneration as the default model
# client: Optional[AsyncHTTPHandler] = None,
# optional_params: Optional[dict] = None,
# timeout: Optional[int] = None,
# logging_obj=None,
# ):
# response = None
# if client is None:
# _params = {}
# if timeout is not None:
# if isinstance(timeout, float) or isinstance(timeout, int):
# _httpx_timeout = httpx.Timeout(timeout)
# _params["timeout"] = _httpx_timeout
# else:
# _params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
# self.async_handler = AsyncHTTPHandler(**_params) # type: ignore
# else:
# self.async_handler = client # type: ignore
# # make POST request to
# # https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/imagegeneration:predict
# url = f"https://{vertex_location}-aiplatform.googleapis.com/v1/projects/{vertex_project}/locations/{vertex_location}/publishers/google/models/{model}:predict"
# """
# Docs link: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
# curl -X POST \
# -H "Authorization: Bearer $(gcloud auth print-access-token)" \
# -H "Content-Type: application/json; charset=utf-8" \
# -d {
# "instances": [
# {
# "prompt": "a cat"
# }
# ],
# "parameters": {
# "sampleCount": 1
# }
# } \
# "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/imagegeneration:predict"
# """
# auth_header, _ = self._ensure_access_token(
# credentials=vertex_credentials, project_id=vertex_project
# )
# optional_params = optional_params or {
# "sampleCount": 1
# } # default optional params
# request_data = {
# "instances": [{"prompt": prompt}],
# "parameters": optional_params,
# }
# request_str = f"\n curl -X POST \\\n -H \"Authorization: Bearer {auth_header[:10] + 'XXXXXXXXXX'}\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d {request_data} \\\n \"{url}\""
# logging_obj.pre_call(
# input=prompt,
# api_key=None,
# additional_args={
# "complete_input_dict": optional_params,
# "request_str": request_str,
# },
# )
# response = await self.async_handler.post(
# url=url,
# headers={
# "Content-Type": "application/json; charset=utf-8",
# "Authorization": f"Bearer {auth_header}",
# },
# data=json.dumps(request_data),
# )
# if response.status_code != 200:
# raise Exception(f"Error: {response.status_code} {response.text}")
# """
# Vertex AI Image generation response example:
# {
# "predictions": [
# {
# "bytesBase64Encoded": "BASE64_IMG_BYTES",
# "mimeType": "image/png"
# },
# {
# "mimeType": "image/png",
# "bytesBase64Encoded": "BASE64_IMG_BYTES"
# }
# ]
# }
# """
# _json_response = response.json()
# if "predictions" not in _json_response:
# raise litellm.InternalServerError(
# message=f"image generation response does not contain 'predictions', got {_json_response}",
# llm_provider="vertex_ai",
# model=model,
# )
# _predictions = _json_response["predictions"]
# _response_data: List[Image] = []
# for _prediction in _predictions:
# _bytes_base64_encoded = _prediction["bytesBase64Encoded"]
# image_object = Image(b64_json=_bytes_base64_encoded)
# _response_data.append(image_object)
# model_response.data = _response_data
# return model_response
class ModelResponseIterator:
def __init__(self, streaming_response, sync_stream: bool):

View file

@ -3477,6 +3477,22 @@ def embedding(
or get_secret("VERTEX_CREDENTIALS")
)
if "image" in optional_params or "video" in optional_params:
# multimodal embedding is supported on vertex httpx
response = vertex_chat_completion.multimodal_embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
vertex_credentials=vertex_credentials,
aembedding=aembedding,
print_verbose=print_verbose,
)
else:
response = vertex_ai.embedding(
model=model,
input=input,