mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
rename llms/OpenAI/
-> llms/openai/
(#7154)
* rename OpenAI -> openai * fix file rename * fix rename changes * fix organization of openai/transcription * fix import OA fine tuning API * fix openai ft handler * fix handler import
This commit is contained in:
parent
e903fe6038
commit
bfb6891eb7
48 changed files with 53 additions and 59 deletions
314
litellm/llms/openai/completion/handler.py
Normal file
314
litellm/llms/openai/completion/handler.py
Normal file
|
@ -0,0 +1,314 @@
|
|||
import json
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
from openai import AsyncOpenAI, OpenAI
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
|
||||
from litellm.llms.base import BaseLLM
|
||||
from litellm.types.llms.openai import AllMessageValues, OpenAITextCompletionUserMessage
|
||||
from litellm.types.utils import ModelResponse, TextCompletionResponse
|
||||
|
||||
from ..common_utils import OpenAIError
|
||||
from .transformation import OpenAITextCompletionConfig
|
||||
|
||||
|
||||
class OpenAITextCompletion(BaseLLM):
|
||||
openai_text_completion_global_config = OpenAITextCompletionConfig()
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def validate_environment(self, api_key):
|
||||
headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model_response: ModelResponse,
|
||||
api_key: str,
|
||||
model: str,
|
||||
messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
|
||||
timeout: float,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
optional_params: dict,
|
||||
print_verbose: Optional[Callable] = None,
|
||||
api_base: Optional[str] = None,
|
||||
acompletion: bool = False,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
client=None,
|
||||
organization: Optional[str] = None,
|
||||
headers: Optional[dict] = None,
|
||||
):
|
||||
try:
|
||||
if headers is None:
|
||||
headers = self.validate_environment(api_key=api_key)
|
||||
if model is None or messages is None:
|
||||
raise OpenAIError(status_code=422, message="Missing model or messages")
|
||||
|
||||
# don't send max retries to the api, if set
|
||||
|
||||
prompt = self.openai_text_completion_global_config._transform_prompt(
|
||||
messages
|
||||
)
|
||||
|
||||
data = {"model": model, "prompt": prompt, **optional_params}
|
||||
max_retries = data.pop("max_retries", 2)
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
"complete_input_dict": data,
|
||||
},
|
||||
)
|
||||
if acompletion is True:
|
||||
if optional_params.get("stream", False):
|
||||
return self.async_streaming(
|
||||
logging_obj=logging_obj,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
headers=headers,
|
||||
model_response=model_response,
|
||||
model=model,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model, timeout=timeout, max_retries=max_retries, organization=organization, client=client) # type: ignore
|
||||
elif optional_params.get("stream", False):
|
||||
return self.streaming(
|
||||
logging_obj=logging_obj,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
headers=headers,
|
||||
model_response=model_response,
|
||||
model=model,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries, # type: ignore
|
||||
client=client,
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
if client is None:
|
||||
openai_client = OpenAI(
|
||||
api_key=api_key,
|
||||
base_url=api_base,
|
||||
http_client=litellm.client_session,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries, # type: ignore
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
openai_client = client
|
||||
|
||||
raw_response = openai_client.completions.with_raw_response.create(**data) # type: ignore
|
||||
response = raw_response.parse()
|
||||
response_json = response.model_dump()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response_json,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return TextCompletionResponse(**response_json)
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
||||
|
||||
async def acompletion(
|
||||
self,
|
||||
logging_obj,
|
||||
api_base: str,
|
||||
data: dict,
|
||||
headers: dict,
|
||||
model_response: ModelResponse,
|
||||
prompt: str,
|
||||
api_key: str,
|
||||
model: str,
|
||||
timeout: float,
|
||||
max_retries: int,
|
||||
organization: Optional[str] = None,
|
||||
client=None,
|
||||
):
|
||||
try:
|
||||
if client is None:
|
||||
openai_aclient = AsyncOpenAI(
|
||||
api_key=api_key,
|
||||
base_url=api_base,
|
||||
http_client=litellm.aclient_session,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
openai_aclient = client
|
||||
|
||||
raw_response = await openai_aclient.completions.with_raw_response.create(
|
||||
**data
|
||||
)
|
||||
response = raw_response.parse()
|
||||
response_json = response.model_dump()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
response_obj = TextCompletionResponse(**response_json)
|
||||
response_obj._hidden_params.original_response = json.dumps(response_json)
|
||||
return response_obj
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
||||
|
||||
def streaming(
|
||||
self,
|
||||
logging_obj,
|
||||
api_key: str,
|
||||
data: dict,
|
||||
headers: dict,
|
||||
model_response: ModelResponse,
|
||||
model: str,
|
||||
timeout: float,
|
||||
api_base: Optional[str] = None,
|
||||
max_retries=None,
|
||||
client=None,
|
||||
organization=None,
|
||||
):
|
||||
|
||||
if client is None:
|
||||
openai_client = OpenAI(
|
||||
api_key=api_key,
|
||||
base_url=api_base,
|
||||
http_client=litellm.client_session,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries, # type: ignore
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
openai_client = client
|
||||
|
||||
try:
|
||||
raw_response = openai_client.completions.with_raw_response.create(**data)
|
||||
response = raw_response.parse()
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=response,
|
||||
model=model,
|
||||
custom_llm_provider="text-completion-openai",
|
||||
logging_obj=logging_obj,
|
||||
stream_options=data.get("stream_options", None),
|
||||
)
|
||||
|
||||
try:
|
||||
for chunk in streamwrapper:
|
||||
yield chunk
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
||||
|
||||
async def async_streaming(
|
||||
self,
|
||||
logging_obj,
|
||||
api_key: str,
|
||||
data: dict,
|
||||
headers: dict,
|
||||
model_response: ModelResponse,
|
||||
model: str,
|
||||
timeout: float,
|
||||
max_retries: int,
|
||||
api_base: Optional[str] = None,
|
||||
client=None,
|
||||
organization=None,
|
||||
):
|
||||
if client is None:
|
||||
openai_client = AsyncOpenAI(
|
||||
api_key=api_key,
|
||||
base_url=api_base,
|
||||
http_client=litellm.aclient_session,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
organization=organization,
|
||||
)
|
||||
else:
|
||||
openai_client = client
|
||||
|
||||
raw_response = await openai_client.completions.with_raw_response.create(**data)
|
||||
response = raw_response.parse()
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=response,
|
||||
model=model,
|
||||
custom_llm_provider="text-completion-openai",
|
||||
logging_obj=logging_obj,
|
||||
stream_options=data.get("stream_options", None),
|
||||
)
|
||||
|
||||
try:
|
||||
async for transformed_chunk in streamwrapper:
|
||||
yield transformed_chunk
|
||||
except Exception as e:
|
||||
status_code = getattr(e, "status_code", 500)
|
||||
error_headers = getattr(e, "headers", None)
|
||||
error_text = getattr(e, "text", str(e))
|
||||
error_response = getattr(e, "response", None)
|
||||
if error_headers is None and error_response:
|
||||
error_headers = getattr(error_response, "headers", None)
|
||||
raise OpenAIError(
|
||||
status_code=status_code, message=error_text, headers=error_headers
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue