Merge branch 'main' into litellm_track_imagen_spend_logs

This commit is contained in:
Ishaan Jaff 2024-09-02 21:21:15 -07:00 committed by GitHub
commit c1adb0b7f2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
32 changed files with 1384 additions and 226 deletions

View file

@ -75,7 +75,6 @@ from litellm.utils import (
from ._logging import verbose_logger
from .caching import disable_cache, enable_cache, update_cache
from .llms import (
ai21,
aleph_alpha,
baseten,
clarifai,
@ -91,6 +90,7 @@ from .llms import (
replicate,
vllm,
)
from .llms.AI21 import completion as ai21
from .llms.anthropic.chat import AnthropicChatCompletion
from .llms.anthropic.completion import AnthropicTextCompletion
from .llms.azure import AzureChatCompletion, _check_dynamic_azure_params
@ -391,6 +391,7 @@ async def acompletion(
or custom_llm_provider == "groq"
or custom_llm_provider == "nvidia_nim"
or custom_llm_provider == "cerebras"
or custom_llm_provider == "ai21_chat"
or custom_llm_provider == "volcengine"
or custom_llm_provider == "codestral"
or custom_llm_provider == "text-completion-codestral"
@ -1297,6 +1298,7 @@ def completion(
or custom_llm_provider == "groq"
or custom_llm_provider == "nvidia_nim"
or custom_llm_provider == "cerebras"
or custom_llm_provider == "ai21_chat"
or custom_llm_provider == "volcengine"
or custom_llm_provider == "codestral"
or custom_llm_provider == "deepseek"
@ -3147,6 +3149,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
or custom_llm_provider == "groq"
or custom_llm_provider == "nvidia_nim"
or custom_llm_provider == "cerebras"
or custom_llm_provider == "ai21_chat"
or custom_llm_provider == "volcengine"
or custom_llm_provider == "deepseek"
or custom_llm_provider == "fireworks_ai"
@ -3811,6 +3814,7 @@ async def atext_completion(
or custom_llm_provider == "groq"
or custom_llm_provider == "nvidia_nim"
or custom_llm_provider == "cerebras"
or custom_llm_provider == "ai21_chat"
or custom_llm_provider == "volcengine"
or custom_llm_provider == "text-completion-codestral"
or custom_llm_provider == "deepseek"
@ -5435,6 +5439,9 @@ def stream_chunk_builder(
# # Update usage information if needed
prompt_tokens = 0
completion_tokens = 0
## anthropic prompt caching information ##
cache_creation_input_tokens: Optional[int] = None
cache_read_input_tokens: Optional[int] = None
for chunk in chunks:
usage_chunk: Optional[Usage] = None
if "usage" in chunk:
@ -5446,6 +5453,13 @@ def stream_chunk_builder(
prompt_tokens = usage_chunk.get("prompt_tokens", 0) or 0
if "completion_tokens" in usage_chunk:
completion_tokens = usage_chunk.get("completion_tokens", 0) or 0
if "cache_creation_input_tokens" in usage_chunk:
cache_creation_input_tokens = usage_chunk.get(
"cache_creation_input_tokens"
)
if "cache_read_input_tokens" in usage_chunk:
cache_read_input_tokens = usage_chunk.get("cache_read_input_tokens")
try:
response["usage"]["prompt_tokens"] = prompt_tokens or token_counter(
model=model, messages=messages
@ -5464,6 +5478,13 @@ def stream_chunk_builder(
response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
)
if cache_creation_input_tokens is not None:
response["usage"][
"cache_creation_input_tokens"
] = cache_creation_input_tokens
if cache_read_input_tokens is not None:
response["usage"]["cache_read_input_tokens"] = cache_read_input_tokens
return convert_to_model_response_object(
response_object=response,
model_response_object=model_response,