refactor(openai.py): moving openai text completion calls to http

This commit is contained in:
Krrish Dholakia 2023-11-08 18:39:56 -08:00
parent db0e032d53
commit c2cbdb23fd
6 changed files with 211 additions and 66 deletions

View file

@ -269,3 +269,132 @@ class OpenAIChatCompletion(BaseLLM):
else:
import traceback
raise OpenAIError(status_code=500, message=traceback.format_exc())
class OpenAITextCompletion(BaseLLM):
_client_session: requests.Session
def __init__(self) -> None:
super().__init__()
self._client_session = self.create_client_session()
def validate_environment(self, api_key):
headers = {
"content-type": "application/json",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
def convert_to_model_response_object(self, response_object: Optional[dict]=None, model_response_object: Optional[ModelResponse]=None):
try:
## RESPONSE OBJECT
if response_object is None or model_response_object is None:
raise OpenAIError(status_code=500, message="Error in response object format")
choice_list=[]
for idx, choice in enumerate(response_object["choices"]):
message = Message(content=choice["text"], role="assistant")
choice = Choices(finish_reason=choice["finish_reason"], index=idx, message=message)
choice_list.append(choice)
model_response_object.choices = choice_list
if "usage" in response_object:
model_response_object.usage = response_object["usage"]
if "id" in response_object:
model_response_object.id = response_object["id"]
if "model" in response_object:
model_response_object.model = response_object["model"]
model_response_object._hidden_params["original_response"] = response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
return model_response_object
except:
OpenAIError(status_code=500, message="Invalid response object.")
def completion(self,
model: Optional[str]=None,
messages: Optional[list]=None,
model_response: Optional[ModelResponse]=None,
print_verbose: Optional[Callable]=None,
api_key: Optional[str]=None,
api_base: Optional[str]=None,
logging_obj=None,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict]=None):
super().completion()
exception_mapping_worked = False
try:
if headers is None:
headers = self.validate_environment(api_key=api_key)
if model is None or messages is None:
raise OpenAIError(status_code=422, message=f"Missing model or messages")
api_base = f"{api_base}/completions"
if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list:
# Note: internal logic - for enabling litellm.text_completion()
# text-davinci-003 can accept a string or array, if it's an array, assume the array is set in messages[0]['content']
# https://platform.openai.com/docs/api-reference/completions/create
prompt = messages[0]["content"]
else:
prompt = " ".join([message["content"] for message in messages]) # type: ignore
data = {
"model": model,
"prompt": prompt,
**optional_params
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={"headers": headers, "api_base": api_base, "data": data},
)
if "stream" in optional_params and optional_params["stream"] == True:
response = self._client_session.post(
url=f"{api_base}",
json=data,
headers=headers,
stream=optional_params["stream"]
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## RESPONSE OBJECT
return response.iter_lines()
else:
response = self._client_session.post(
url=f"{api_base}",
json=data,
headers=headers,
)
if response.status_code != 200:
raise OpenAIError(status_code=response.status_code, message=response.text)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response,
additional_args={
"headers": headers,
"api_base": api_base,
},
)
## RESPONSE OBJECT
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
except OpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise OpenAIError(status_code=500, message=traceback.format_exc())

View file

@ -49,7 +49,7 @@ from .llms import (
palm,
vertex_ai,
maritalk)
from .llms.openai import OpenAIChatCompletion
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
from .llms.azure import AzureChatCompletion
from .llms.prompt_templates.factory import prompt_factory, custom_prompt, function_call_prompt
import tiktoken
@ -73,6 +73,7 @@ from litellm.utils import (
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
openai_chat_completions = OpenAIChatCompletion()
openai_text_completions = OpenAITextCompletion()
azure_chat_completions = AzureChatCompletion()
####### COMPLETION ENDPOINTS ################
@ -498,14 +499,8 @@ def completion(
)
elif (
custom_llm_provider == "text-completion-openai"
or model in litellm.open_ai_text_completion_models
or "ft:babbage-002" in model
or "ft:davinci-002" in model # support for finetuned completion models
# NOTE: Do NOT add custom_llm_provider == "openai".
# this will break hosted vllm/proxy calls.
# see: https://docs.litellm.ai/docs/providers/vllm#calling-hosted-vllm-server.
# VLLM expects requests to call openai.ChatCompletion we need those requests to always
# call openai.ChatCompletion
):
# print("calling custom openai provider")
openai.api_type = "openai"
@ -558,43 +553,22 @@ def completion(
},
)
## COMPLETION CALL
response = openai.Completion.create(
model=model,
prompt=prompt,
headers=headers,
api_key = api_key,
api_base=api_base,
**optional_params
)
if "stream" in optional_params and optional_params["stream"] == True:
response = CustomStreamWrapper(response, model, custom_llm_provider="text-completion-openai", logging_obj=logging)
return response
## LOGGING
logging.post_call(
input=prompt,
model_response = openai_text_completions.completion(
model=model,
messages=messages,
model_response=model_response,
print_verbose=print_verbose,
api_key=api_key,
original_response=response,
additional_args={
"openai_organization": litellm.organization,
"headers": headers,
"api_base": openai.api_base,
"api_type": openai.api_type,
},
api_base=api_base,
logging_obj=logging,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn
)
## RESPONSE OBJECT
model_response._hidden_params["original_response"] = response # track original response, if users make a litellm.text_completion() request, we can return the original response
choices_list = []
for idx, item in enumerate(response["choices"]):
if len(item["text"]) > 0:
message_obj = Message(content=item["text"])
else:
message_obj = Message(content=None)
choice_obj = Choices(finish_reason=item["finish_reason"], index=idx+1, message=message_obj)
choices_list.append(choice_obj)
model_response["choices"] = choices_list
model_response["created"] = response.get("created", time.time())
model_response["model"] = model
model_response["usage"] = response.get("usage", 0)
if "stream" in optional_params and optional_params["stream"] == True:
response = CustomStreamWrapper(model_response, model, custom_llm_provider="text-completion-openai", logging_obj=logging)
return response
response = model_response
elif (
"replicate" in model or

View file

@ -391,11 +391,12 @@ def test_completion_openai():
def test_completion_text_openai():
try:
litellm.set_verbose = True
response = completion(model="gpt-3.5-turbo-instruct", messages=messages)
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_text_openai()
test_completion_text_openai()
def test_completion_openai_with_optional_params():
try:

View file

@ -62,7 +62,7 @@ def test_context_window_with_fallbacks(model):
# for model in litellm.models_by_provider["bedrock"]:
# test_context_window(model=model)
# test_context_window(model="gpt-3.5-turbo")
# test_context_window(model="gpt-3.5-turbo-instruct")
# test_context_window_with_fallbacks(model="command-nightly")
# Test 2: InvalidAuth Errors
@pytest.mark.parametrize("model", models)
@ -70,7 +70,7 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
messages = [{"content": "Hello, how are you?", "role": "user"}]
temporary_key = None
try:
if model == "gpt-3.5-turbo":
if model == "gpt-3.5-turbo" or model == "gpt-3.5-turbo-instruct":
temporary_key = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_KEY"] = "bad-key"
elif model == "bedrock/anthropic.claude-v2":
@ -158,7 +158,7 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
# for model in litellm.models_by_provider["bedrock"]:
# invalid_auth(model=model)
# invalid_auth(model="gpt-3.5-turbo")
# invalid_auth(model="gpt-3.5-turbo-instruct")
# Test 3: Invalid Request Error
@pytest.mark.parametrize("model", models)

View file

@ -916,7 +916,31 @@ def test_openai_chat_completion_call():
print(f"error occurred: {traceback.format_exc()}")
pass
test_openai_chat_completion_call()
# test_openai_chat_completion_call()
def test_openai_text_completion_call():
try:
litellm.set_verbose = True
response = completion(
model="gpt-3.5-turbo-instruct", messages=messages, stream=True
)
complete_response = ""
start_time = time.time()
for idx, chunk in enumerate(response):
chunk, finished = streaming_format_tests(idx, chunk)
complete_response += chunk
if finished:
break
# print(f'complete_chunk: {complete_response}')
if complete_response.strip() == "":
raise Exception("Empty response received")
print(f"complete response: {complete_response}")
except:
print(f"error occurred: {traceback.format_exc()}")
pass
test_openai_text_completion_call()
# # test on together ai completion call - starcoder
def test_together_ai_completion_call_starcoder():

View file

@ -2890,19 +2890,19 @@ def exception_type(
exception_type = type(original_exception).__name__
else:
exception_type = ""
if custom_llm_provider == "openai":
if custom_llm_provider == "openai" or custom_llm_provider == "text-completion-openai":
if "This model's maximum context length is" in error_str:
exception_mapping_worked = True
raise ContextWindowExceededError(
message=f"AzureException - {original_exception.message}",
llm_provider="azure",
message=f"OpenAIException - {original_exception.message}",
llm_provider="openai",
model=model
)
elif "invalid_request_error" in error_str:
exception_mapping_worked = True
raise InvalidRequestError(
message=f"AzureException - {original_exception.message}",
llm_provider="azure",
message=f"OpenAIException - {original_exception.message}",
llm_provider="openai",
model=model
)
elif hasattr(original_exception, "status_code"):
@ -4013,16 +4013,33 @@ class CustomStreamWrapper:
else:
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
except:
except Exception as e:
traceback.print_exc()
pass
raise e
def handle_openai_text_completion_chunk(self, chunk):
try:
return chunk["choices"][0]["text"]
except:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
try:
str_line = chunk.decode("utf-8") # Convert bytes to string
text = ""
is_finished = False
finish_reason = None
if str_line.startswith("data:"):
data_json = json.loads(str_line[5:])
print_verbose(f"delta content: {data_json['choices'][0]['text']}")
text = data_json["choices"][0].get("text", "")
if data_json["choices"][0].get("finish_reason", None):
is_finished = True
finish_reason = data_json["choices"][0]["finish_reason"]
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
elif "error" in str_line:
raise ValueError(f"Unable to parse response. Original response: {str_line}")
else:
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
except Exception as e:
traceback.print_exc()
raise e
def handle_baseten_chunk(self, chunk):
try:
@ -4146,9 +4163,6 @@ class CustomStreamWrapper:
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
model_response.choices[0].finish_reason = response_obj["finish_reason"]
elif self.custom_llm_provider and self.custom_llm_provider == "text-completion-openai":
chunk = next(self.completion_stream)
completion_obj["content"] = self.handle_openai_text_completion_chunk(chunk)
elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud":
try:
chunk = next(self.completion_stream)
@ -4235,12 +4249,15 @@ class CustomStreamWrapper:
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
model_response.choices[0].finish_reason = response_obj["finish_reason"]
else: # openai chat/azure models
elif self.custom_llm_provider == "text-completion-openai":
chunk = next(self.completion_stream)
model_response = chunk
# LOGGING
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
return model_response
response_obj = self.handle_openai_text_completion_chunk(chunk)
completion_obj["content"] = response_obj["text"]
print_verbose(f"completion obj content: {completion_obj['content']}")
if response_obj["is_finished"]:
model_response.choices[0].finish_reason = response_obj["finish_reason"]
else: # openai chat/azure models
raise Exception("Unmapped Model Error")
model_response.model = self.model
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string