mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
refactor(openai.py): moving openai text completion calls to http
This commit is contained in:
parent
db0e032d53
commit
c2cbdb23fd
6 changed files with 211 additions and 66 deletions
|
@ -269,3 +269,132 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
else:
|
||||
import traceback
|
||||
raise OpenAIError(status_code=500, message=traceback.format_exc())
|
||||
|
||||
|
||||
class OpenAITextCompletion(BaseLLM):
|
||||
_client_session: requests.Session
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self._client_session = self.create_client_session()
|
||||
|
||||
def validate_environment(self, api_key):
|
||||
headers = {
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def convert_to_model_response_object(self, response_object: Optional[dict]=None, model_response_object: Optional[ModelResponse]=None):
|
||||
try:
|
||||
## RESPONSE OBJECT
|
||||
if response_object is None or model_response_object is None:
|
||||
raise OpenAIError(status_code=500, message="Error in response object format")
|
||||
choice_list=[]
|
||||
for idx, choice in enumerate(response_object["choices"]):
|
||||
message = Message(content=choice["text"], role="assistant")
|
||||
choice = Choices(finish_reason=choice["finish_reason"], index=idx, message=message)
|
||||
choice_list.append(choice)
|
||||
model_response_object.choices = choice_list
|
||||
|
||||
if "usage" in response_object:
|
||||
model_response_object.usage = response_object["usage"]
|
||||
|
||||
if "id" in response_object:
|
||||
model_response_object.id = response_object["id"]
|
||||
|
||||
if "model" in response_object:
|
||||
model_response_object.model = response_object["model"]
|
||||
|
||||
model_response_object._hidden_params["original_response"] = response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
|
||||
return model_response_object
|
||||
except:
|
||||
OpenAIError(status_code=500, message="Invalid response object.")
|
||||
|
||||
def completion(self,
|
||||
model: Optional[str]=None,
|
||||
messages: Optional[list]=None,
|
||||
model_response: Optional[ModelResponse]=None,
|
||||
print_verbose: Optional[Callable]=None,
|
||||
api_key: Optional[str]=None,
|
||||
api_base: Optional[str]=None,
|
||||
logging_obj=None,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers: Optional[dict]=None):
|
||||
super().completion()
|
||||
exception_mapping_worked = False
|
||||
try:
|
||||
if headers is None:
|
||||
headers = self.validate_environment(api_key=api_key)
|
||||
if model is None or messages is None:
|
||||
raise OpenAIError(status_code=422, message=f"Missing model or messages")
|
||||
|
||||
api_base = f"{api_base}/completions"
|
||||
|
||||
if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list:
|
||||
# Note: internal logic - for enabling litellm.text_completion()
|
||||
# text-davinci-003 can accept a string or array, if it's an array, assume the array is set in messages[0]['content']
|
||||
# https://platform.openai.com/docs/api-reference/completions/create
|
||||
prompt = messages[0]["content"]
|
||||
else:
|
||||
prompt = " ".join([message["content"] for message in messages]) # type: ignore
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
**optional_params
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base, "data": data},
|
||||
)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
response = self._client_session.post(
|
||||
url=f"{api_base}",
|
||||
json=data,
|
||||
headers=headers,
|
||||
stream=optional_params["stream"]
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return response.iter_lines()
|
||||
else:
|
||||
response = self._client_session.post(
|
||||
url=f"{api_base}",
|
||||
json=data,
|
||||
headers=headers,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response,
|
||||
additional_args={
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
||||
except OpenAIError as e:
|
||||
exception_mapping_worked = True
|
||||
raise e
|
||||
except Exception as e:
|
||||
if exception_mapping_worked:
|
||||
raise e
|
||||
else:
|
||||
import traceback
|
||||
raise OpenAIError(status_code=500, message=traceback.format_exc())
|
||||
|
|
|
@ -49,7 +49,7 @@ from .llms import (
|
|||
palm,
|
||||
vertex_ai,
|
||||
maritalk)
|
||||
from .llms.openai import OpenAIChatCompletion
|
||||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||
from .llms.azure import AzureChatCompletion
|
||||
from .llms.prompt_templates.factory import prompt_factory, custom_prompt, function_call_prompt
|
||||
import tiktoken
|
||||
|
@ -73,6 +73,7 @@ from litellm.utils import (
|
|||
####### ENVIRONMENT VARIABLES ###################
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
openai_chat_completions = OpenAIChatCompletion()
|
||||
openai_text_completions = OpenAITextCompletion()
|
||||
azure_chat_completions = AzureChatCompletion()
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
|
@ -498,14 +499,8 @@ def completion(
|
|||
)
|
||||
elif (
|
||||
custom_llm_provider == "text-completion-openai"
|
||||
or model in litellm.open_ai_text_completion_models
|
||||
or "ft:babbage-002" in model
|
||||
or "ft:davinci-002" in model # support for finetuned completion models
|
||||
# NOTE: Do NOT add custom_llm_provider == "openai".
|
||||
# this will break hosted vllm/proxy calls.
|
||||
# see: https://docs.litellm.ai/docs/providers/vllm#calling-hosted-vllm-server.
|
||||
# VLLM expects requests to call openai.ChatCompletion we need those requests to always
|
||||
# call openai.ChatCompletion
|
||||
):
|
||||
# print("calling custom openai provider")
|
||||
openai.api_type = "openai"
|
||||
|
@ -558,43 +553,22 @@ def completion(
|
|||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = openai.Completion.create(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
headers=headers,
|
||||
api_key = api_key,
|
||||
api_base=api_base,
|
||||
**optional_params
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
response = CustomStreamWrapper(response, model, custom_llm_provider="text-completion-openai", logging_obj=logging)
|
||||
return response
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=prompt,
|
||||
model_response = openai_text_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
api_key=api_key,
|
||||
original_response=response,
|
||||
additional_args={
|
||||
"openai_organization": litellm.organization,
|
||||
"headers": headers,
|
||||
"api_base": openai.api_base,
|
||||
"api_type": openai.api_type,
|
||||
},
|
||||
api_base=api_base,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
model_response._hidden_params["original_response"] = response # track original response, if users make a litellm.text_completion() request, we can return the original response
|
||||
choices_list = []
|
||||
for idx, item in enumerate(response["choices"]):
|
||||
if len(item["text"]) > 0:
|
||||
message_obj = Message(content=item["text"])
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(finish_reason=item["finish_reason"], index=idx+1, message=message_obj)
|
||||
choices_list.append(choice_obj)
|
||||
model_response["choices"] = choices_list
|
||||
model_response["created"] = response.get("created", time.time())
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = response.get("usage", 0)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
response = CustomStreamWrapper(model_response, model, custom_llm_provider="text-completion-openai", logging_obj=logging)
|
||||
return response
|
||||
response = model_response
|
||||
elif (
|
||||
"replicate" in model or
|
||||
|
|
|
@ -391,11 +391,12 @@ def test_completion_openai():
|
|||
|
||||
def test_completion_text_openai():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
response = completion(model="gpt-3.5-turbo-instruct", messages=messages)
|
||||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_text_openai()
|
||||
test_completion_text_openai()
|
||||
|
||||
def test_completion_openai_with_optional_params():
|
||||
try:
|
||||
|
|
|
@ -62,7 +62,7 @@ def test_context_window_with_fallbacks(model):
|
|||
|
||||
# for model in litellm.models_by_provider["bedrock"]:
|
||||
# test_context_window(model=model)
|
||||
# test_context_window(model="gpt-3.5-turbo")
|
||||
# test_context_window(model="gpt-3.5-turbo-instruct")
|
||||
# test_context_window_with_fallbacks(model="command-nightly")
|
||||
# Test 2: InvalidAuth Errors
|
||||
@pytest.mark.parametrize("model", models)
|
||||
|
@ -70,7 +70,7 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
|||
messages = [{"content": "Hello, how are you?", "role": "user"}]
|
||||
temporary_key = None
|
||||
try:
|
||||
if model == "gpt-3.5-turbo":
|
||||
if model == "gpt-3.5-turbo" or model == "gpt-3.5-turbo-instruct":
|
||||
temporary_key = os.environ["OPENAI_API_KEY"]
|
||||
os.environ["OPENAI_API_KEY"] = "bad-key"
|
||||
elif model == "bedrock/anthropic.claude-v2":
|
||||
|
@ -158,7 +158,7 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
|||
|
||||
# for model in litellm.models_by_provider["bedrock"]:
|
||||
# invalid_auth(model=model)
|
||||
# invalid_auth(model="gpt-3.5-turbo")
|
||||
# invalid_auth(model="gpt-3.5-turbo-instruct")
|
||||
|
||||
# Test 3: Invalid Request Error
|
||||
@pytest.mark.parametrize("model", models)
|
||||
|
|
|
@ -916,7 +916,31 @@ def test_openai_chat_completion_call():
|
|||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
test_openai_chat_completion_call()
|
||||
# test_openai_chat_completion_call()
|
||||
|
||||
|
||||
def test_openai_text_completion_call():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo-instruct", messages=messages, stream=True
|
||||
)
|
||||
complete_response = ""
|
||||
start_time = time.time()
|
||||
for idx, chunk in enumerate(response):
|
||||
chunk, finished = streaming_format_tests(idx, chunk)
|
||||
complete_response += chunk
|
||||
if finished:
|
||||
break
|
||||
# print(f'complete_chunk: {complete_response}')
|
||||
if complete_response.strip() == "":
|
||||
raise Exception("Empty response received")
|
||||
print(f"complete response: {complete_response}")
|
||||
except:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
test_openai_text_completion_call()
|
||||
|
||||
# # test on together ai completion call - starcoder
|
||||
def test_together_ai_completion_call_starcoder():
|
||||
|
|
|
@ -2890,19 +2890,19 @@ def exception_type(
|
|||
exception_type = type(original_exception).__name__
|
||||
else:
|
||||
exception_type = ""
|
||||
if custom_llm_provider == "openai":
|
||||
if custom_llm_provider == "openai" or custom_llm_provider == "text-completion-openai":
|
||||
if "This model's maximum context length is" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise ContextWindowExceededError(
|
||||
message=f"AzureException - {original_exception.message}",
|
||||
llm_provider="azure",
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
llm_provider="openai",
|
||||
model=model
|
||||
)
|
||||
elif "invalid_request_error" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=f"AzureException - {original_exception.message}",
|
||||
llm_provider="azure",
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
llm_provider="openai",
|
||||
model=model
|
||||
)
|
||||
elif hasattr(original_exception, "status_code"):
|
||||
|
@ -4013,16 +4013,33 @@ class CustomStreamWrapper:
|
|||
else:
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
|
||||
except:
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
pass
|
||||
raise e
|
||||
|
||||
|
||||
def handle_openai_text_completion_chunk(self, chunk):
|
||||
try:
|
||||
return chunk["choices"][0]["text"]
|
||||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
try:
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
text = ""
|
||||
is_finished = False
|
||||
finish_reason = None
|
||||
if str_line.startswith("data:"):
|
||||
data_json = json.loads(str_line[5:])
|
||||
print_verbose(f"delta content: {data_json['choices'][0]['text']}")
|
||||
text = data_json["choices"][0].get("text", "")
|
||||
if data_json["choices"][0].get("finish_reason", None):
|
||||
is_finished = True
|
||||
finish_reason = data_json["choices"][0]["finish_reason"]
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
elif "error" in str_line:
|
||||
raise ValueError(f"Unable to parse response. Original response: {str_line}")
|
||||
else:
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
raise e
|
||||
|
||||
def handle_baseten_chunk(self, chunk):
|
||||
try:
|
||||
|
@ -4146,9 +4163,6 @@ class CustomStreamWrapper:
|
|||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj["finish_reason"]
|
||||
elif self.custom_llm_provider and self.custom_llm_provider == "text-completion-openai":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_openai_text_completion_chunk(chunk)
|
||||
elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud":
|
||||
try:
|
||||
chunk = next(self.completion_stream)
|
||||
|
@ -4235,12 +4249,15 @@ class CustomStreamWrapper:
|
|||
print_verbose(f"completion obj content: {completion_obj['content']}")
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj["finish_reason"]
|
||||
else: # openai chat/azure models
|
||||
elif self.custom_llm_provider == "text-completion-openai":
|
||||
chunk = next(self.completion_stream)
|
||||
model_response = chunk
|
||||
# LOGGING
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
|
||||
return model_response
|
||||
response_obj = self.handle_openai_text_completion_chunk(chunk)
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
print_verbose(f"completion obj content: {completion_obj['content']}")
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj["finish_reason"]
|
||||
else: # openai chat/azure models
|
||||
raise Exception("Unmapped Model Error")
|
||||
|
||||
model_response.model = self.model
|
||||
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue