mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
fix(utils.py): handle failed hf tokenizer request during calls (#8032)
* fix(utils.py): handle failed hf tokenizer request during calls prevents proxy from failing due to bad hf tokenizer calls * fix(utils.py): convert failure callback str to custom logger class Fixes https://github.com/BerriAI/litellm/issues/8013 * test(test_utils.py): fix test - avoid adding mlflow dep on ci/cd * fix: add missing env vars to test * test: cleanup redundant test
This commit is contained in:
parent
74e332bfdd
commit
c2e3986bbc
3 changed files with 136 additions and 23 deletions
|
@ -474,6 +474,11 @@ def function_setup( # noqa: PLR0915
|
|||
if inspect.iscoroutinefunction(callback):
|
||||
litellm._async_failure_callback.append(callback)
|
||||
removed_async_items.append(index)
|
||||
elif (
|
||||
callback in litellm._known_custom_logger_compatible_callbacks
|
||||
and isinstance(callback, str)
|
||||
):
|
||||
_add_custom_logger_callback_to_specific_event(callback, "failure")
|
||||
|
||||
# Pop the async items from failure_callback in reverse order to avoid index issues
|
||||
for index in reversed(removed_async_items):
|
||||
|
@ -1385,30 +1390,33 @@ def _select_tokenizer(
|
|||
|
||||
@lru_cache(maxsize=128)
|
||||
def _select_tokenizer_helper(model: str):
|
||||
if model in litellm.cohere_models and "command-r" in model:
|
||||
# cohere
|
||||
cohere_tokenizer = Tokenizer.from_pretrained(
|
||||
"Xenova/c4ai-command-r-v01-tokenizer"
|
||||
)
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer}
|
||||
# anthropic
|
||||
elif model in litellm.anthropic_models and "claude-3" not in model:
|
||||
claude_tokenizer = Tokenizer.from_str(claude_json_str)
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer}
|
||||
# llama2
|
||||
elif "llama-2" in model.lower() or "replicate" in model.lower():
|
||||
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
# llama3
|
||||
elif "llama-3" in model.lower():
|
||||
tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
try:
|
||||
if model in litellm.cohere_models and "command-r" in model:
|
||||
# cohere
|
||||
cohere_tokenizer = Tokenizer.from_pretrained(
|
||||
"Xenova/c4ai-command-r-v01-tokenizer"
|
||||
)
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer}
|
||||
# anthropic
|
||||
elif model in litellm.anthropic_models and "claude-3" not in model:
|
||||
claude_tokenizer = Tokenizer.from_str(claude_json_str)
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer}
|
||||
# llama2
|
||||
elif "llama-2" in model.lower() or "replicate" in model.lower():
|
||||
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
# llama3
|
||||
elif "llama-3" in model.lower():
|
||||
tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
|
||||
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
||||
except Exception as e:
|
||||
verbose_logger.debug(f"Error selecting tokenizer: {e}")
|
||||
|
||||
# default - tiktoken
|
||||
else:
|
||||
return {
|
||||
"type": "openai_tokenizer",
|
||||
"tokenizer": encoding,
|
||||
} # default to openai tokenizer
|
||||
return {
|
||||
"type": "openai_tokenizer",
|
||||
"tokenizer": encoding,
|
||||
} # default to openai tokenizer
|
||||
|
||||
|
||||
def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue