mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
refactor(openai.py): moving openai chat completion calls to http
This commit is contained in:
parent
da1451e493
commit
c57ed0a9d7
6 changed files with 158 additions and 127 deletions
|
@ -7,7 +7,7 @@ from typing import Callable, Optional
|
|||
# This file just has the openai config classes.
|
||||
# For implementation check out completion() in main.py
|
||||
|
||||
class CustomOpenAIError(Exception):
|
||||
class OpenAIError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
|
@ -163,7 +163,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
def convert_to_model_response_object(self, response_object: Optional[dict]=None, model_response_object: Optional[ModelResponse]=None):
|
||||
try:
|
||||
if response_object is None or model_response_object is None:
|
||||
raise CustomOpenAIError(status_code=500, message="Error in response object format")
|
||||
raise OpenAIError(status_code=500, message="Error in response object format")
|
||||
choice_list=[]
|
||||
for idx, choice in enumerate(response_object["choices"]):
|
||||
message = Message(content=choice["message"]["content"], role=choice["message"]["role"])
|
||||
|
@ -181,7 +181,7 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
model_response_object.model = response_object["model"]
|
||||
return model_response_object
|
||||
except:
|
||||
CustomOpenAIError(status_code=500, message="Invalid response object.")
|
||||
OpenAIError(status_code=500, message="Invalid response object.")
|
||||
|
||||
def completion(self,
|
||||
model: Optional[str]=None,
|
||||
|
@ -193,58 +193,79 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
logging_obj=None,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None):
|
||||
logger_fn=None,
|
||||
headers: Optional[dict]=None):
|
||||
super().completion()
|
||||
headers = self.validate_environment(api_key=api_key)
|
||||
if model is None or messages is None:
|
||||
raise CustomOpenAIError(status_code=422, message=f"Missing model or messages")
|
||||
exception_mapping_worked = False
|
||||
try:
|
||||
if headers is None:
|
||||
headers = self.validate_environment(api_key=api_key)
|
||||
if model is None or messages is None:
|
||||
raise OpenAIError(status_code=422, message=f"Missing model or messages")
|
||||
|
||||
for _ in range(2): # if call fails due to alternating messages, retry with reformatted message
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params
|
||||
}
|
||||
try:
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
response = self._client_session.post(
|
||||
url=f"{api_base}/chat/completions",
|
||||
json=data,
|
||||
headers=headers,
|
||||
stream=optional_params["stream"]
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise CustomOpenAIError(status_code=response.status_code, message=response.text)
|
||||
for _ in range(2): # if call fails due to alternating messages, retry with reformatted message
|
||||
data = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params
|
||||
}
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return response.iter_lines()
|
||||
else:
|
||||
response = self._client_session.post(
|
||||
url=f"{api_base}/chat/completions",
|
||||
json=data,
|
||||
headers=headers,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise CustomOpenAIError(status_code=response.status_code, message=response.text)
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base},
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
|
||||
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
|
||||
new_messages = []
|
||||
for i in range(len(messages)-1):
|
||||
new_messages.append(messages[i])
|
||||
if messages[i]["role"] == messages[i+1]["role"]:
|
||||
if messages[i]["role"] == "user":
|
||||
new_messages.append({"role": "assistant", "content": ""})
|
||||
else:
|
||||
new_messages.append({"role": "user", "content": ""})
|
||||
new_messages.append(messages[-1])
|
||||
messages = new_messages
|
||||
elif "Last message must have role `user`" in str(e):
|
||||
new_messages = messages
|
||||
new_messages.append({"role": "user", "content": ""})
|
||||
messages = new_messages
|
||||
else:
|
||||
raise e
|
||||
try:
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
response = self._client_session.post(
|
||||
url=f"{api_base}/chat/completions",
|
||||
json=data,
|
||||
headers=headers,
|
||||
stream=optional_params["stream"]
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return response.iter_lines()
|
||||
else:
|
||||
response = self._client_session.post(
|
||||
url=f"{api_base}/chat/completions",
|
||||
json=data,
|
||||
headers=headers,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise OpenAIError(status_code=response.status_code, message=response.text)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
||||
except Exception as e:
|
||||
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
|
||||
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
|
||||
new_messages = []
|
||||
for i in range(len(messages)-1):
|
||||
new_messages.append(messages[i])
|
||||
if messages[i]["role"] == messages[i+1]["role"]:
|
||||
if messages[i]["role"] == "user":
|
||||
new_messages.append({"role": "assistant", "content": ""})
|
||||
else:
|
||||
new_messages.append({"role": "user", "content": ""})
|
||||
new_messages.append(messages[-1])
|
||||
messages = new_messages
|
||||
elif "Last message must have role `user`" in str(e):
|
||||
new_messages = messages
|
||||
new_messages.append({"role": "user", "content": ""})
|
||||
messages = new_messages
|
||||
else:
|
||||
raise e
|
||||
except OpenAIError as e:
|
||||
exception_mapping_worked = True
|
||||
raise e
|
||||
except Exception as e:
|
||||
if exception_mapping_worked:
|
||||
raise e
|
||||
else:
|
||||
import traceback
|
||||
raise OpenAIError(status_code=500, message=traceback.format_exc())
|
||||
|
|
|
@ -198,7 +198,6 @@ def completion(
|
|||
logit_bias: dict = {},
|
||||
user: str = "",
|
||||
deployment_id = None,
|
||||
request_timeout: Optional[int] = None,
|
||||
|
||||
# set api_base, api_version, api_key
|
||||
api_base: Optional[str] = None,
|
||||
|
@ -270,7 +269,7 @@ def completion(
|
|||
eos_token = kwargs.get("eos_token", None)
|
||||
######## end of unpacking kwargs ###########
|
||||
openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout", "api_base", "api_version", "api_key"]
|
||||
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token"]
|
||||
litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout"]
|
||||
default_params = openai_params + litellm_params
|
||||
non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
|
||||
if mock_response:
|
||||
|
@ -334,7 +333,6 @@ def completion(
|
|||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
user=user,
|
||||
request_timeout=request_timeout,
|
||||
deployment_id=deployment_id,
|
||||
# params to identify the model
|
||||
model=model,
|
||||
|
@ -464,38 +462,20 @@ def completion(
|
|||
if k not in optional_params: # completion(top_k=3) > openai_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
## LOGGING
|
||||
logging.pre_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
additional_args={"headers": headers, "api_base": api_base},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
try:
|
||||
if custom_llm_provider == "custom_openai":
|
||||
response = openai_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn
|
||||
)
|
||||
else:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages=messages,
|
||||
headers=headers, # None by default
|
||||
api_base=api_base, # thread safe setting base, key, api_version
|
||||
api_key=api_key,
|
||||
api_type="openai",
|
||||
api_version=api_version, # default None
|
||||
**optional_params,
|
||||
)
|
||||
response = openai_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn
|
||||
)
|
||||
except Exception as e:
|
||||
## LOGGING - log the original exception returned
|
||||
logging.post_call(
|
||||
|
|
|
@ -95,20 +95,6 @@ def test_completion_claude():
|
|||
# pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_aleph_alpha_control_models()
|
||||
|
||||
def test_completion_with_litellm_call_id():
|
||||
try:
|
||||
litellm.use_client = False
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=messages)
|
||||
print(response)
|
||||
if 'litellm_call_id' in response:
|
||||
pytest.fail(f"Error occurred: litellm_call_id in response objects")
|
||||
print(response.usage)
|
||||
print(response.usage.completion_tokens)
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_with_litellm_call_id()
|
||||
import openai
|
||||
def test_completion_gpt4_turbo():
|
||||
try:
|
||||
|
@ -381,6 +367,8 @@ def test_completion_cohere(): # commenting for now as the cohere endpoint is bei
|
|||
|
||||
def test_completion_openai():
|
||||
try:
|
||||
litellm.set_verbose=True
|
||||
print(f"api key: {os.environ['OPENAI_API_KEY']}")
|
||||
litellm.api_key = os.environ['OPENAI_API_KEY']
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=10, request_timeout=10)
|
||||
print("This is the response object\n", response)
|
||||
|
|
|
@ -62,7 +62,7 @@ def test_context_window_with_fallbacks(model):
|
|||
|
||||
# for model in litellm.models_by_provider["bedrock"]:
|
||||
# test_context_window(model=model)
|
||||
# test_context_window(model="azure/chatgpt-v-2")
|
||||
# test_context_window(model="gpt-3.5-turbo")
|
||||
# test_context_window_with_fallbacks(model="command-nightly")
|
||||
# Test 2: InvalidAuth Errors
|
||||
@pytest.mark.parametrize("model", models)
|
||||
|
@ -158,7 +158,7 @@ def invalid_auth(model): # set the model key to an invalid key, depending on th
|
|||
|
||||
# for model in litellm.models_by_provider["bedrock"]:
|
||||
# invalid_auth(model=model)
|
||||
# invalid_auth(model="azure/chatgpt-v-2")
|
||||
# invalid_auth(model="gpt-3.5-turbo")
|
||||
|
||||
# Test 3: Invalid Request Error
|
||||
@pytest.mark.parametrize("model", models)
|
||||
|
@ -168,7 +168,7 @@ def test_invalid_request_error(model):
|
|||
with pytest.raises(InvalidRequestError):
|
||||
completion(model=model, messages=messages, max_tokens="hello world")
|
||||
|
||||
test_invalid_request_error(model="azure/chatgpt-v-2")
|
||||
# test_invalid_request_error(model="gpt-3.5-turbo")
|
||||
# Test 3: Rate Limit Errors
|
||||
# def test_model_call(model):
|
||||
# try:
|
||||
|
|
|
@ -897,8 +897,9 @@ def ai21_completion_call_bad_key():
|
|||
# test on openai completion call
|
||||
def test_openai_chat_completion_call():
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
response = completion(
|
||||
model="gpt-3.5-turbo", messages=messages, stream=True, logger_fn=logger_fn, max_tokens=10
|
||||
model="gpt-3.5-turbo", messages=messages, stream=True
|
||||
)
|
||||
complete_response = ""
|
||||
start_time = time.time()
|
||||
|
@ -915,7 +916,7 @@ def test_openai_chat_completion_call():
|
|||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
# test_openai_chat_completion_call()
|
||||
test_openai_chat_completion_call()
|
||||
|
||||
# # test on together ai completion call - starcoder
|
||||
def test_together_ai_completion_call_starcoder():
|
||||
|
|
|
@ -1358,7 +1358,6 @@ def get_optional_params( # use the openai defaults
|
|||
frequency_penalty=0,
|
||||
logit_bias={},
|
||||
user="",
|
||||
request_timeout=None,
|
||||
deployment_id=None,
|
||||
model=None,
|
||||
custom_llm_provider="",
|
||||
|
@ -1383,7 +1382,6 @@ def get_optional_params( # use the openai defaults
|
|||
"logit_bias":{},
|
||||
"user":"",
|
||||
"deployment_id":None,
|
||||
"request_timeout":None,
|
||||
"model":None,
|
||||
"custom_llm_provider":"",
|
||||
}
|
||||
|
@ -1408,8 +1406,6 @@ def get_optional_params( # use the openai defaults
|
|||
if k == "n" and n == 1: # langchain sends n=1 as a default value
|
||||
pass
|
||||
# Always keeps this in elif code blocks
|
||||
elif k == "request_timeout": # litellm handles request time outs
|
||||
pass
|
||||
else:
|
||||
unsupported_params[k] = non_default_params[k]
|
||||
if unsupported_params and not litellm.drop_params:
|
||||
|
@ -1761,7 +1757,7 @@ def get_optional_params( # use the openai defaults
|
|||
if stream:
|
||||
optional_params["stream"] = stream
|
||||
elif custom_llm_provider == "deepinfra":
|
||||
supported_params = ["temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "deployment_id", "request_timeout"]
|
||||
supported_params = ["temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "deployment_id"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = non_default_params
|
||||
if temperature != None:
|
||||
|
@ -1769,7 +1765,7 @@ def get_optional_params( # use the openai defaults
|
|||
temperature = 0.0001 # close to 0
|
||||
optional_params["temperature"] = temperature
|
||||
else: # assume passing in params for openai/azure openai
|
||||
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "deployment_id", "request_timeout"]
|
||||
supported_params = ["functions", "function_call", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "deployment_id"]
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
optional_params = non_default_params
|
||||
# if user passed in non-default kwargs for specific providers/models, pass them along
|
||||
|
@ -2881,8 +2877,6 @@ def exception_type(
|
|||
llm_provider="openrouter"
|
||||
)
|
||||
original_exception.llm_provider = "openrouter"
|
||||
else:
|
||||
original_exception.llm_provider = "openai"
|
||||
if "This model's maximum context length is" in original_exception._message:
|
||||
raise ContextWindowExceededError(
|
||||
message=str(original_exception),
|
||||
|
@ -2896,7 +2890,60 @@ def exception_type(
|
|||
exception_type = type(original_exception).__name__
|
||||
else:
|
||||
exception_type = ""
|
||||
if custom_llm_provider == "anthropic": # one of the anthropics
|
||||
if custom_llm_provider == "openai":
|
||||
if "This model's maximum context length is" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise ContextWindowExceededError(
|
||||
message=f"AzureException - {original_exception.message}",
|
||||
llm_provider="azure",
|
||||
model=model
|
||||
)
|
||||
elif "invalid_request_error" in error_str:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=f"AzureException - {original_exception.message}",
|
||||
llm_provider="azure",
|
||||
model=model
|
||||
)
|
||||
elif hasattr(original_exception, "status_code"):
|
||||
exception_mapping_worked = True
|
||||
if original_exception.status_code == 401:
|
||||
exception_mapping_worked = True
|
||||
raise AuthenticationError(
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
llm_provider="openai",
|
||||
model=model
|
||||
)
|
||||
elif original_exception.status_code == 408:
|
||||
exception_mapping_worked = True
|
||||
raise Timeout(
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider="openai"
|
||||
)
|
||||
if original_exception.status_code == 422:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider="openai",
|
||||
)
|
||||
elif original_exception.status_code == 429:
|
||||
exception_mapping_worked = True
|
||||
raise RateLimitError(
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
model=model,
|
||||
llm_provider="openai",
|
||||
)
|
||||
else:
|
||||
exception_mapping_worked = True
|
||||
raise APIError(
|
||||
status_code=original_exception.status_code,
|
||||
message=f"OpenAIException - {original_exception.message}",
|
||||
llm_provider="openai",
|
||||
model=model
|
||||
)
|
||||
elif custom_llm_provider == "anthropic": # one of the anthropics
|
||||
if hasattr(original_exception, "message"):
|
||||
if "prompt is too long" in original_exception.message:
|
||||
exception_mapping_worked = True
|
||||
|
@ -3941,7 +3988,7 @@ class CustomStreamWrapper:
|
|||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_custom_openai_chat_completion_chunk(self, chunk):
|
||||
def handle_openai_chat_completion_chunk(self, chunk):
|
||||
try:
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
text = ""
|
||||
|
@ -3977,12 +4024,6 @@ class CustomStreamWrapper:
|
|||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_openai_chat_completion_chunk(self, chunk):
|
||||
try:
|
||||
return chunk["choices"][0]["delta"]["content"]
|
||||
except:
|
||||
return ""
|
||||
|
||||
def handle_baseten_chunk(self, chunk):
|
||||
try:
|
||||
chunk = chunk.decode("utf-8")
|
||||
|
@ -4187,9 +4228,9 @@ class CustomStreamWrapper:
|
|||
if "error" in chunk:
|
||||
exception_type(model=self.model, custom_llm_provider=self.custom_llm_provider, original_exception=chunk["error"])
|
||||
completion_obj = chunk
|
||||
elif self.custom_llm_provider == "custom_openai":
|
||||
elif self.custom_llm_provider == "openai":
|
||||
chunk = next(self.completion_stream)
|
||||
response_obj = self.handle_custom_openai_chat_completion_chunk(chunk)
|
||||
response_obj = self.handle_openai_chat_completion_chunk(chunk)
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
print_verbose(f"completion obj content: {completion_obj['content']}")
|
||||
if response_obj["is_finished"]:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue