mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
fix(vertex_ai.py): add exception mapping for acompletion calls
This commit is contained in:
parent
16b7b8097b
commit
c673a23769
5 changed files with 99 additions and 70 deletions
|
@ -220,64 +220,67 @@ async def async_completion(llm_model, mode: str, prompt: str, model: str, model_
|
|||
"""
|
||||
Add support for acompletion calls for gemini-pro
|
||||
"""
|
||||
from vertexai.preview.generative_models import GenerationConfig
|
||||
try:
|
||||
from vertexai.preview.generative_models import GenerationConfig
|
||||
|
||||
if mode == "":
|
||||
# gemini-pro
|
||||
chat = llm_model.start_chat()
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await chat.send_message_async(prompt, generation_config=GenerationConfig(**optional_params))
|
||||
completion_response = response_obj.text
|
||||
response_obj = response_obj._raw_response
|
||||
elif mode == "chat":
|
||||
# chat-bison etc.
|
||||
chat = llm_model.start_chat()
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await chat.send_message_async(prompt, **optional_params)
|
||||
completion_response = response_obj.text
|
||||
elif mode == "text":
|
||||
# gecko etc.
|
||||
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await llm_model.predict_async(prompt, **optional_params)
|
||||
completion_response = response_obj.text
|
||||
if mode == "":
|
||||
# gemini-pro
|
||||
chat = llm_model.start_chat()
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await chat.send_message_async(prompt, generation_config=GenerationConfig(**optional_params))
|
||||
completion_response = response_obj.text
|
||||
response_obj = response_obj._raw_response
|
||||
elif mode == "chat":
|
||||
# chat-bison etc.
|
||||
chat = llm_model.start_chat()
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await chat.send_message_async(prompt, **optional_params)
|
||||
completion_response = response_obj.text
|
||||
elif mode == "text":
|
||||
# gecko etc.
|
||||
request_str += f"llm_model.predict({prompt}, **{optional_params}).text\n"
|
||||
## LOGGING
|
||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params, "request_str": request_str})
|
||||
response_obj = await llm_model.predict_async(prompt, **optional_params)
|
||||
completion_response = response_obj.text
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt, api_key=None, original_response=completion_response
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
if len(str(completion_response)) > 0:
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = str(completion_response)
|
||||
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
## CALCULATING USAGE
|
||||
if model in litellm.vertex_language_models and response_obj is not None:
|
||||
model_response["choices"][0].finish_reason = response_obj.candidates[0].finish_reason.name
|
||||
usage = Usage(prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
||||
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
||||
total_tokens=response_obj.usage_metadata.total_token_count)
|
||||
else:
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt, api_key=None, original_response=completion_response
|
||||
)
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
|
||||
## RESPONSE OBJECT
|
||||
if len(str(completion_response)) > 0:
|
||||
model_response["choices"][0]["message"][
|
||||
"content"
|
||||
] = str(completion_response)
|
||||
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
## CALCULATING USAGE
|
||||
if model in litellm.vertex_language_models and response_obj is not None:
|
||||
model_response["choices"][0].finish_reason = response_obj.candidates[0].finish_reason.name
|
||||
usage = Usage(prompt_tokens=response_obj.usage_metadata.prompt_token_count,
|
||||
completion_tokens=response_obj.usage_metadata.candidates_token_count,
|
||||
total_tokens=response_obj.usage_metadata.total_token_count)
|
||||
else:
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
||||
|
||||
async def async_streaming(llm_model, mode: str, prompt: str, model: str, model_response: ModelResponse, logging_obj=None, request_str=None, **optional_params):
|
||||
"""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue