mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
docs(completion-docs): adds more details on provider-specific params
This commit is contained in:
parent
b4501f0241
commit
c6d36fb59d
8 changed files with 749 additions and 35 deletions
|
@ -1,5 +1,426 @@
|
|||
# Input Format
|
||||
The Input params are **exactly the same** as the <a href="https://platform.openai.com/docs/api-reference/chat/create" target="_blank" rel="noopener noreferrer">OpenAI Create chat completion</a>, and let you call 100+ models in the same format.
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Input Params
|
||||
|
||||
## Common Params
|
||||
LiteLLM accepts and translates the [OpenAI Chat Completion params](https://platform.openai.com/docs/api-reference/chat/create) across all providers.
|
||||
|
||||
### usage
|
||||
```python
|
||||
import litellm
|
||||
|
||||
# set env variables
|
||||
os.environ["OPENAI_API_KEY"] = "your-openai-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
### translated OpenAI params
|
||||
This is a list of openai params we translate across providers.
|
||||
|
||||
This list is constantly being updated.
|
||||
|
||||
| Provider | temperature | max_tokens | top_p | stream | stop | n | presence_penalty | frequency_penalty | functions | function_call |
|
||||
|---|---|---|---|---|---|---|---|---|---|---|
|
||||
|Anthropic| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|
||||
|OpenAI| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|Replicate | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Cohere| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|
||||
|Huggingface| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Openrouter| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|AI21| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|
||||
|VertexAI| ✅ | ✅ | | ✅ | | | | | | |
|
||||
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|
||||
|Sagemaker| ✅ | ✅ | | ✅ | | | | | | |
|
||||
|TogetherAI| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|
||||
|AlephAlpha| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Palm| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|NLP Cloud| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Petals| ✅ | ✅ | | ✅ | | | | | | |
|
||||
|Ollama| ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | |n
|
||||
|
||||
:::note
|
||||
|
||||
By default, LiteLLM raises an exception if the openai param being passed in isn't supported.
|
||||
|
||||
To drop the param instead, set `litellm.drop_params = True`.
|
||||
|
||||
:::
|
||||
|
||||
## Provider-specific Params
|
||||
Providers might offer params not supported by OpenAI (e.g. top_k). You can pass those in 2 ways:
|
||||
- via completion(): We'll pass the non-openai param, straight to the provider as part of the request body.
|
||||
- e.g. `completion(model="claude-instant-1", top_k=3)`
|
||||
- via provider-specific config variable (e.g. `litellm.OpenAIConfig()`).
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["OPENAI_API_KEY"] = "your-openai-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.OpenAIConfig(max_tokens=10)
|
||||
|
||||
response_2 = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="openai-text" label="OpenAI Text Completion">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["OPENAI_API_KEY"] = "your-openai-key"
|
||||
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="text-davinci-003",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.OpenAITextCompletionConfig(max_tokens=10)
|
||||
response_2 = litellm.completion(
|
||||
model="text-davinci-003",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="azure-openai" label="Azure OpenAI">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["AZURE_API_BASE"] = "your-azure-api-base"
|
||||
os.environ["AZURE_API_TYPE"] = "azure" # [OPTIONAL]
|
||||
os.environ["AZURE_API_VERSION"] = "2023-07-01-preview" # [OPTIONAL]
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="azure/chatgpt-v-2",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.AzureOpenAIConfig(max_tokens=10)
|
||||
response_2 = litellm.completion(
|
||||
model="azure/chatgpt-v-2",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="anthropic" label="Anthropic">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="claude-instant-1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.AnthropicConfig(max_tokens_to_sample=200)
|
||||
response_2 = litellm.completion(
|
||||
model="claude-instant-1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="huggingface" label="Huggingface">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["HUGGINGFACE_API_KEY"] = "your-huggingface-key" #[OPTIONAL]
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
api_base="https://your-huggingface-api-endpoint",
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.HuggingfaceConfig(max_new_tokens=200)
|
||||
response_2 = litellm.completion(
|
||||
model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
api_base="https://your-huggingface-api-endpoint"
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="together_ai" label="TogetherAI">
|
||||
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["TOGETHERAI_API_KEY"] = "your-togetherai-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="together_ai/togethercomputer/llama-2-70b-chat",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.TogetherAIConfig(max_tokens_to_sample=200)
|
||||
response_2 = litellm.completion(
|
||||
model="together_ai/togethercomputer/llama-2-70b-chat",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="replicate" label="Replicate">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["REPLICATE_API_KEY"] = "your-replicate-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.ReplicateConfig(max_new_tokens=200)
|
||||
response_2 = litellm.completion(
|
||||
model="replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="petals" label="Petals">
|
||||
|
||||
|
||||
```python
|
||||
import litellm
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="petals/petals-team/StableBeluga2",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
api_base="https://chat.petals.dev/api/v1/generate",
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.PetalsConfig(max_new_tokens=10)
|
||||
response_2 = litellm.completion(
|
||||
model="petals/petals-team/StableBeluga2",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
api_base="https://chat.petals.dev/api/v1/generate",
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="palm" label="Palm">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["PALM_API_KEY"] = "your-palm-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="palm/chat-bison",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.PalmConfig(maxOutputTokens=10)
|
||||
response_2 = litellm.completion(
|
||||
model="palm/chat-bison",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="ai21" label="AI21">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["AI21_API_KEY"] = "your-ai21-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="j2-mid",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.AI21Config(maxOutputTokens=10)
|
||||
response_2 = litellm.completion(
|
||||
model="j2-mid",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="cohere" label="Cohere">
|
||||
|
||||
```python
|
||||
import litellm, os
|
||||
|
||||
# set env variables
|
||||
os.environ["COHERE_API_KEY"] = "your-cohere-key"
|
||||
|
||||
## SET MAX TOKENS - via completion()
|
||||
response_1 = litellm.completion(
|
||||
model="command-nightly",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
|
||||
## SET MAX TOKENS - via config
|
||||
litellm.CohereConfig(max_tokens=200)
|
||||
response_2 = litellm.completion(
|
||||
model="command-nightly",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
|
||||
## TEST OUTPUT
|
||||
assert len(response_2_text) > len(response_1_text)
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
|
||||
[**Check out the tutorial!**](../tutorials/provider_specific_params.md)
|
||||
|
||||
## Input - Request Body
|
||||
# Request Body
|
||||
|
@ -54,31 +475,3 @@ The Input params are **exactly the same** as the <a href="https://platform.opena
|
|||
- `logit_bias`: *map (optional)* - Used to modify the probability of specific tokens appearing in the completion.
|
||||
|
||||
- `user`: *string (optional)* - A unique identifier representing your end-user. This can help OpenAI to monitor and detect abuse.
|
||||
|
||||
# Params supported across providers
|
||||
This is a list of openai params we translate across providers. You can send any provider-specific param by just including it in completion().
|
||||
|
||||
E.g. If Anthropic supports top_k, then `completion(model="claude-2", .., top_k=3)` would send the value straight to Anthropic.
|
||||
|
||||
This list is constantly being updated.
|
||||
|
||||
| Provider | temperature | max_tokens | top_p | stream | stop | n | presence_penalty | frequency_penalty | functions | function_call |
|
||||
|---|---|---|---|---|---|---|---|---|---|---|
|
||||
|Anthropic| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|
||||
|OpenAI| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|Replicate | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Cohere| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|
||||
|Huggingface| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Openrouter| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|AI21| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | |
|
||||
|VertexAI| ✅ | ✅ | | ✅ | | | | | | |
|
||||
|Bedrock| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|
||||
|Sagemaker| ✅ | ✅ | | ✅ | | | | | | |
|
||||
|TogetherAI| ✅ | ✅ | ✅ | ✅ | ✅ | | | | | |
|
||||
|AlephAlpha| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Palm| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|NLP Cloud| ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | | | |
|
||||
|Petals| ✅ | ✅ | | ✅ | | | | | | |
|
||||
|Ollama| ✅ | ✅ | ✅ | ✅ | ✅ | | | ✅ | | |n
|
||||
|
||||
By default, LiteLLM raises an exception if the param being passed in isn't supported. However, if you want to just drop the param, instead of raising an exception, just set `litellm.drop_params = True`.
|
34
docs/my-website/docs/tutorials/provider_specific_params.md
Normal file
34
docs/my-website/docs/tutorials/provider_specific_params.md
Normal file
|
@ -0,0 +1,34 @@
|
|||
### Setting provider-specific Params
|
||||
|
||||
Goal: Set max tokens across OpenAI + Cohere
|
||||
|
||||
**1. via completion**
|
||||
|
||||
LiteLLM will automatically translate max_tokens to the naming convention followed by that specific model provider.
|
||||
|
||||
```python
|
||||
from litellm import completion
|
||||
import os
|
||||
|
||||
## set ENV variables
|
||||
os.environ["OPENAI_API_KEY"] = "your-openai-key"
|
||||
os.environ["COHERE_API_KEY"] = "your-cohere-key"
|
||||
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
|
||||
# openai call
|
||||
response = completion(model="gpt-3.5-turbo", messages=messages, max_tokens=100)
|
||||
|
||||
# cohere call
|
||||
response = completion(model="command-nightly", messages=messages, max_tokens=100)
|
||||
print(response)
|
||||
```
|
||||
|
||||
**2. via provider-specific config**
|
||||
|
||||
For every provider on LiteLLM, we've gotten their specific params (following their naming conventions, etc.). You can just set it for that provider by pulling up that provider via `litellm.<provider_name>Config`.
|
||||
|
||||
All provider configs are typed and have docstrings, so you should see them autocompleted for you in VSCode with an explanation of what it means.
|
||||
|
||||
Here's an example of setting max tokens through provider configs.
|
||||
|
|
@ -325,6 +325,7 @@ from .llms.vertex_ai import VertexAIConfig
|
|||
from .llms.sagemaker import SagemakerConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
from .llms.bedrock import AmazonTitanConfig, AmazonAI21Config, AmazonAnthropicConfig, AmazonCohereConfig
|
||||
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig, AzureOpenAIConfig
|
||||
from .main import * # type: ignore
|
||||
from .integrations import *
|
||||
from .exceptions import (
|
||||
|
|
Binary file not shown.
Binary file not shown.
184
litellm/llms/openai.py
Normal file
184
litellm/llms/openai.py
Normal file
|
@ -0,0 +1,184 @@
|
|||
from typing import Optional, Union
|
||||
import types
|
||||
|
||||
# This file just has the openai config classes.
|
||||
# For implementation check out completion() in main.py
|
||||
|
||||
class OpenAIConfig():
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
||||
|
||||
The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:
|
||||
|
||||
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
||||
|
||||
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
||||
|
||||
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
||||
|
||||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||||
|
||||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
||||
|
||||
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
||||
|
||||
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
||||
|
||||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||||
|
||||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
||||
|
||||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||||
"""
|
||||
frequency_penalty: Optional[int]=None
|
||||
function_call: Optional[Union[str, dict]]=None
|
||||
functions: Optional[list]=None
|
||||
logit_bias: Optional[dict]=None
|
||||
max_tokens: Optional[int]=None
|
||||
n: Optional[int]=None
|
||||
presence_penalty: Optional[int]=None
|
||||
stop: Optional[Union[str, list]]=None
|
||||
temperature: Optional[int]=None
|
||||
top_p: Optional[int]=None
|
||||
|
||||
def __init__(self,
|
||||
frequency_penalty: Optional[int]=None,
|
||||
function_call: Optional[Union[str, dict]]=None,
|
||||
functions: Optional[list]=None,
|
||||
logit_bias: Optional[dict]=None,
|
||||
max_tokens: Optional[int]=None,
|
||||
n: Optional[int]=None,
|
||||
presence_penalty: Optional[int]=None,
|
||||
stop: Optional[Union[str, list]]=None,
|
||||
temperature: Optional[int]=None,
|
||||
top_p: Optional[int]=None,) -> None:
|
||||
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != 'self' and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {k: v for k, v in cls.__dict__.items()
|
||||
if not k.startswith('__')
|
||||
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
||||
and v is not None}
|
||||
|
||||
class OpenAITextCompletionConfig():
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/completions/create
|
||||
|
||||
The class `OpenAITextCompletionConfig` provides configuration for the OpenAI's text completion API interface. Below are the parameters:
|
||||
|
||||
- `best_of` (integer or null): This optional parameter generates server-side completions and returns the one with the highest log probability per token.
|
||||
|
||||
- `echo` (boolean or null): This optional parameter will echo back the prompt in addition to the completion.
|
||||
|
||||
- `frequency_penalty` (number or null): Defaults to 0. It is a numbers from -2.0 to 2.0, where positive values decrease the model's likelihood to repeat the same line.
|
||||
|
||||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||||
|
||||
- `logprobs` (integer or null): This optional parameter includes the log probabilities on the most likely tokens as well as the chosen tokens.
|
||||
|
||||
- `max_tokens` (integer or null): This optional parameter sets the maximum number of tokens to generate in the completion.
|
||||
|
||||
- `n` (integer or null): This optional parameter sets how many completions to generate for each prompt.
|
||||
|
||||
- `presence_penalty` (number or null): Defaults to 0 and can be between -2.0 and 2.0. Positive values increase the model's likelihood to talk about new topics.
|
||||
|
||||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||||
|
||||
- `suffix` (string or null): Defines the suffix that comes after a completion of inserted text.
|
||||
|
||||
- `temperature` (number or null): This optional parameter defines the sampling temperature to use.
|
||||
|
||||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||||
"""
|
||||
best_of: Optional[int]=None
|
||||
echo: Optional[bool]=None
|
||||
frequency_penalty: Optional[int]=None
|
||||
logit_bias: Optional[dict]=None
|
||||
logprobs: Optional[int]=None
|
||||
max_tokens: Optional[int]=None
|
||||
n: Optional[int]=None
|
||||
presence_penalty: Optional[int]=None
|
||||
stop: Optional[Union[str, list]]=None
|
||||
suffix: Optional[str]=None
|
||||
temperature: Optional[float]=None
|
||||
top_p: Optional[float]=None
|
||||
|
||||
def __init__(self,
|
||||
best_of: Optional[int]=None,
|
||||
echo: Optional[bool]=None,
|
||||
frequency_penalty: Optional[int]=None,
|
||||
logit_bias: Optional[dict]=None,
|
||||
logprobs: Optional[int]=None,
|
||||
max_tokens: Optional[int]=None,
|
||||
n: Optional[int]=None,
|
||||
presence_penalty: Optional[int]=None,
|
||||
stop: Optional[Union[str, list]]=None,
|
||||
suffix: Optional[str]=None,
|
||||
temperature: Optional[float]=None,
|
||||
top_p: Optional[float]=None) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != 'self' and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {k: v for k, v in cls.__dict__.items()
|
||||
if not k.startswith('__')
|
||||
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
||||
and v is not None}
|
||||
|
||||
|
||||
class AzureOpenAIConfig(OpenAIConfig):
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
||||
|
||||
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
|
||||
|
||||
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
||||
|
||||
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
||||
|
||||
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
||||
|
||||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||||
|
||||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
||||
|
||||
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
||||
|
||||
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
||||
|
||||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||||
|
||||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
||||
|
||||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
frequency_penalty: int | None = None,
|
||||
function_call: str | dict | None = None,
|
||||
functions: list | None = None,
|
||||
logit_bias: dict | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: int | None = None,
|
||||
stop: str | list | None = None,
|
||||
temperature: int | None = None,
|
||||
top_p: int | None = None) -> None:
|
||||
super().__init__(frequency_penalty,
|
||||
function_call,
|
||||
functions,
|
||||
logit_bias,
|
||||
max_tokens,
|
||||
n,
|
||||
presence_penalty,
|
||||
stop,
|
||||
temperature,
|
||||
top_p)
|
|
@ -66,7 +66,6 @@ from litellm.utils import (
|
|||
####### ENVIRONMENT VARIABLES ###################
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
|
||||
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
async def acompletion(*args, **kwargs):
|
||||
|
@ -310,6 +309,12 @@ def completion(
|
|||
get_secret("AZURE_API_KEY")
|
||||
)
|
||||
|
||||
## LOAD CONFIG - if set
|
||||
config=litellm.AzureOpenAIConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params: # completion(top_k=3) > azure_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
## LOGGING
|
||||
logging.pre_call(
|
||||
input=messages,
|
||||
|
@ -368,6 +373,13 @@ def completion(
|
|||
litellm.openai_key or
|
||||
get_secret("OPENAI_API_KEY")
|
||||
)
|
||||
|
||||
## LOAD CONFIG - if set
|
||||
config=litellm.OpenAIConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params: # completion(top_k=3) > openai_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
## LOGGING
|
||||
logging.pre_call(
|
||||
input=messages,
|
||||
|
@ -436,6 +448,12 @@ def completion(
|
|||
get_secret("OPENAI_API_KEY")
|
||||
)
|
||||
|
||||
## LOAD CONFIG - if set
|
||||
config=litellm.OpenAITextCompletionConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in optional_params: # completion(top_k=3) > openai_text_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
|
||||
if litellm.organization:
|
||||
openai.organization = litellm.organization
|
||||
|
|
|
@ -50,7 +50,7 @@ def claude_test_completion():
|
|||
try:
|
||||
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
||||
response_1 = litellm.completion(
|
||||
model="claude-instant-1",
|
||||
model="together_ai/togethercomputer/llama-2-70b-chat",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
max_tokens=10
|
||||
)
|
||||
|
@ -60,7 +60,7 @@ def claude_test_completion():
|
|||
|
||||
# USE CONFIG TOKENS
|
||||
response_2 = litellm.completion(
|
||||
model="claude-instant-1",
|
||||
model="together_ai/togethercomputer/llama-2-70b-chat",
|
||||
messages=[{ "content": "Hello, how are you?","role": "user"}],
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
|
@ -393,3 +393,87 @@ def bedrock_test_completion():
|
|||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# bedrock_test_completion()
|
||||
|
||||
# OpenAI Chat Completion
|
||||
def openai_test_completion():
|
||||
litellm.OpenAIConfig(max_tokens=10)
|
||||
# litellm.set_verbose=True
|
||||
try:
|
||||
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
||||
response_1 = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
||||
max_tokens=100
|
||||
)
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
print(f"response_1_text: {response_1_text}")
|
||||
|
||||
# USE CONFIG TOKENS
|
||||
response_2 = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
||||
)
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
print(f"response_2_text: {response_2_text}")
|
||||
|
||||
assert len(response_2_text) < len(response_1_text)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# openai_test_completion()
|
||||
|
||||
# OpenAI Text Completion
|
||||
def openai_text_completion_test():
|
||||
litellm.OpenAITextCompletionConfig(max_tokens=10)
|
||||
# litellm.set_verbose=True
|
||||
try:
|
||||
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
||||
response_1 = litellm.completion(
|
||||
model="text-davinci-003",
|
||||
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
||||
max_tokens=100
|
||||
)
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
print(f"response_1_text: {response_1_text}")
|
||||
|
||||
# USE CONFIG TOKENS
|
||||
response_2 = litellm.completion(
|
||||
model="text-davinci-003",
|
||||
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
||||
)
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
print(f"response_2_text: {response_2_text}")
|
||||
|
||||
assert len(response_2_text) < len(response_1_text)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# openai_text_completion_test()
|
||||
|
||||
# Azure OpenAI
|
||||
def azure_openai_test_completion():
|
||||
litellm.AzureOpenAIConfig(max_tokens=10)
|
||||
# litellm.set_verbose=True
|
||||
try:
|
||||
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
||||
response_1 = litellm.completion(
|
||||
model="azure/chatgpt-v-2",
|
||||
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
||||
max_tokens=100
|
||||
)
|
||||
response_1_text = response_1.choices[0].message.content
|
||||
print(f"response_1_text: {response_1_text}")
|
||||
|
||||
# USE CONFIG TOKENS
|
||||
response_2 = litellm.completion(
|
||||
model="azure/chatgpt-v-2",
|
||||
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
||||
)
|
||||
response_2_text = response_2.choices[0].message.content
|
||||
print(f"response_2_text: {response_2_text}")
|
||||
|
||||
assert len(response_2_text) < len(response_1_text)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# azure_openai_test_completion()
|
Loading…
Add table
Add a link
Reference in a new issue