mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
streaming for amazon titan bedrock
This commit is contained in:
parent
93fbe4a733
commit
c714372b9d
4 changed files with 82 additions and 44 deletions
|
@ -59,6 +59,7 @@ def completion(
|
|||
encoding,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
stream=False,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
|
@ -106,6 +107,15 @@ def completion(
|
|||
## COMPLETION CALL
|
||||
accept = 'application/json'
|
||||
contentType = 'application/json'
|
||||
if stream == True:
|
||||
response = client.invoke_model_with_response_stream(
|
||||
body=data,
|
||||
modelId=model,
|
||||
accept=accept,
|
||||
contentType=contentType
|
||||
)
|
||||
response = response.get('body')
|
||||
return response
|
||||
|
||||
response = client.invoke_model(
|
||||
body=data,
|
||||
|
@ -114,50 +124,48 @@ def completion(
|
|||
contentType=contentType
|
||||
)
|
||||
response_body = json.loads(response.get('body').read())
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
outputText = "default"
|
||||
if provider == "ai21":
|
||||
outputText = response_body.get('completions')[0].get('data').get('text')
|
||||
else: # amazon titan
|
||||
outputText = response_body.get('results')[0].get('outputText')
|
||||
if "error" in outputText:
|
||||
raise BedrockError(
|
||||
message=outputText,
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
outputText = "default"
|
||||
if provider == "ai21":
|
||||
outputText = response_body.get('completions')[0].get('data').get('text')
|
||||
else: # amazon titan
|
||||
outputText = response_body.get('results')[0].get('outputText')
|
||||
if "error" in outputText:
|
||||
raise BedrockError(
|
||||
message=outputText,
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = outputText
|
||||
except:
|
||||
raise BedrockError(message=json.dumps(outputText), status_code=response.status_code)
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = outputText
|
||||
except:
|
||||
raise BedrockError(message=json.dumps(outputText), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
|
|
|
@ -781,10 +781,12 @@ def completion(
|
|||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging
|
||||
logging_obj=logging,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True: ## [BETA]
|
||||
|
||||
if stream == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
iter(model_response), model, custom_llm_provider="bedrock", logging_obj=logging
|
||||
|
|
|
@ -676,7 +676,24 @@ def test_completion_bedrock_ai21():
|
|||
print(response)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_bedrock_ai21()
|
||||
|
||||
def test_completion_bedrock_ai21_stream():
|
||||
try:
|
||||
litellm.set_verbose = False
|
||||
response = completion(
|
||||
model="bedrock/amazon.titan-tg1-large",
|
||||
messages=[{"role": "user", "content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?"}],
|
||||
temperature=1,
|
||||
max_tokens=4096,
|
||||
stream=True,
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
for chunk in response:
|
||||
print(chunk)
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
# test_completion_bedrock_ai21_stream()
|
||||
|
||||
|
||||
# test_completion_sagemaker()
|
||||
|
|
|
@ -2475,6 +2475,15 @@ class CustomStreamWrapper:
|
|||
traceback.print_exc()
|
||||
return ""
|
||||
|
||||
def handle_bedrock_stream(self):
|
||||
if self.completion_stream:
|
||||
event = next(self.completion_stream)
|
||||
chunk = event.get('chunk')
|
||||
if chunk:
|
||||
chunk_data = json.loads(chunk.get('bytes').decode())
|
||||
return chunk_data['outputText']
|
||||
return ""
|
||||
|
||||
def __next__(self):
|
||||
try:
|
||||
# return this for all models
|
||||
|
@ -2520,6 +2529,8 @@ class CustomStreamWrapper:
|
|||
elif self.model in litellm.cohere_models or self.custom_llm_provider == "cohere":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_cohere_chunk(chunk)
|
||||
elif self.custom_llm_provider == "bedrock":
|
||||
completion_obj["content"] = self.handle_bedrock_stream()
|
||||
else: # openai chat/azure models
|
||||
chunk = next(self.completion_stream)
|
||||
model_response = chunk
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue