test: add unit testing

This commit is contained in:
Krrish Dholakia 2025-03-21 15:01:19 -07:00
parent dfea55a1e7
commit c7b17495a1
3 changed files with 44 additions and 14 deletions

View file

@ -9,9 +9,13 @@ Has 4 methods:
"""
import json
import sys
import time
from typing import Any, List, Optional
from pydantic import BaseModel
from ..constants import MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB
from .base_cache import BaseCache
@ -22,6 +26,7 @@ class InMemoryCache(BaseCache):
default_ttl: Optional[
int
] = 600, # default ttl is 10 minutes. At maximum litellm rate limiting logic requires objects to be in memory for 1 minute
max_size_per_item: Optional[int] = 1024, # 1MB = 1024KB
):
"""
max_size_in_memory [int]: Maximum number of items in cache. done to prevent memory leaks. Use 200 items as a default
@ -30,7 +35,9 @@ class InMemoryCache(BaseCache):
max_size_in_memory or 200
) # set an upper bound of 200 items in-memory
self.default_ttl = default_ttl or 600
self.max_size_per_item = 1024 # 1MB = 1024KB
self.max_size_per_item = (
max_size_per_item or MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB
) # 1MB = 1024KB
# in-memory cache
self.cache_dict: dict = {}
@ -42,26 +49,37 @@ class InMemoryCache(BaseCache):
Returns True if value size is acceptable, False otherwise
"""
try:
# Handle special types
if hasattr(value, "model_dump"): # Pydantic v2
# Fast path for common primitive types that are typically small
if (
isinstance(value, (bool, int, float, str))
and len(str(value)) < self.max_size_per_item * 512
): # Conservative estimate
return True
# Direct size check for bytes objects
if isinstance(value, bytes):
return sys.getsizeof(value) / 1024 <= self.max_size_per_item
# Handle special types without full conversion when possible
if hasattr(value, "__sizeof__"): # Use __sizeof__ if available
size = value.__sizeof__() / 1024
return size <= self.max_size_per_item
# Fallback for complex types
if isinstance(value, BaseModel) and hasattr(
value, "model_dump"
): # Pydantic v2
value = value.model_dump()
elif hasattr(value, "dict"): # Pydantic v1
value = value.dict()
elif hasattr(value, "isoformat"): # datetime objects
value = value.isoformat()
return True # datetime strings are always small
# Convert value to JSON string to get a consistent size measurement
# Only convert to JSON if absolutely necessary
if not isinstance(value, (str, bytes)):
value = json.dumps(
value, default=str
) # default=str handles any remaining datetime objects
value = json.dumps(value, default=str)
# Get size in KB (1KB = 1024 bytes)
value_size = len(str(value).encode("utf-8")) / 1024
return sys.getsizeof(value) / 1024 <= self.max_size_per_item
return value_size <= self.max_size_per_item
except Exception:
# If we can't measure the size, assume it's too large
return False
def evict_cache(self):

View file

@ -14,6 +14,7 @@ DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = 1
DEFAULT_IMAGE_TOKEN_COUNT = 250
DEFAULT_IMAGE_WIDTH = 300
DEFAULT_IMAGE_HEIGHT = 300
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 1024 # 1MB = 1024KB
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = 1000 # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.
#### RELIABILITY ####
REPEATED_STREAMING_CHUNK_LIMIT = 100 # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.

View file

@ -32,3 +32,14 @@ def test_in_memory_openai_obj_cache():
assert cached_obj is not None
assert cached_obj == openai_obj
def test_in_memory_cache_max_size_per_item():
"""
Test that the cache will not store items larger than the max size per item
"""
in_memory_cache = InMemoryCache(max_size_per_item=100)
result = in_memory_cache.check_value_size("a" * 100000000)
assert result is False