(feat) add usage / cost tracking for Anthropic passthrough routes (#6835)

* move _process_response in transformation

* fix AnthropicConfig test

* add AnthropicConfig

* fix anthropic_passthrough_handler

* fix get_response_body

* fix check for streaming response

* use 1 helper to return stream_response on passthrough
This commit is contained in:
Ishaan Jaff 2024-11-20 17:25:12 -08:00 committed by GitHub
parent 2ee4fbb0a5
commit c991864d69
3 changed files with 142 additions and 30 deletions

View file

@ -2,12 +2,17 @@ import json
import re
import threading
from datetime import datetime
from typing import Union
from typing import Optional, Union
import httpx
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.litellm_logging import (
get_standard_logging_object_payload,
)
from litellm.llms.anthropic.chat.transformation import AnthropicConfig
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
VertexLLM,
)
@ -23,9 +28,13 @@ class PassThroughEndpointLogging:
"predict",
]
# Anthropic
self.TRACKED_ANTHROPIC_ROUTES = ["/messages"]
async def pass_through_async_success_handler(
self,
httpx_response: httpx.Response,
response_body: Optional[dict],
logging_obj: LiteLLMLoggingObj,
url_route: str,
result: str,
@ -45,6 +54,18 @@ class PassThroughEndpointLogging:
cache_hit=cache_hit,
**kwargs,
)
elif self.is_anthropic_route(url_route):
await self.anthropic_passthrough_handler(
httpx_response=httpx_response,
response_body=response_body or {},
logging_obj=logging_obj,
url_route=url_route,
result=result,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
**kwargs,
)
else:
standard_logging_response_object = StandardPassThroughResponseObject(
response=httpx_response.text
@ -76,6 +97,12 @@ class PassThroughEndpointLogging:
return True
return False
def is_anthropic_route(self, url_route: str):
for route in self.TRACKED_ANTHROPIC_ROUTES:
if route in url_route:
return True
return False
def extract_model_from_url(self, url: str) -> str:
pattern = r"/models/([^:]+)"
match = re.search(pattern, url)
@ -83,6 +110,72 @@ class PassThroughEndpointLogging:
return match.group(1)
return "unknown"
async def anthropic_passthrough_handler(
self,
httpx_response: httpx.Response,
response_body: dict,
logging_obj: LiteLLMLoggingObj,
url_route: str,
result: str,
start_time: datetime,
end_time: datetime,
cache_hit: bool,
**kwargs,
):
"""
Transforms Anthropic response to OpenAI response, generates a standard logging object so downstream logging can be handled
"""
model = response_body.get("model", "")
litellm_model_response: litellm.ModelResponse = (
AnthropicConfig._process_response(
response=httpx_response,
model_response=litellm.ModelResponse(),
model=model,
stream=False,
messages=[],
logging_obj=logging_obj,
optional_params={},
api_key="",
data={},
print_verbose=litellm.print_verbose,
encoding=None,
json_mode=False,
)
)
response_cost = litellm.completion_cost(
completion_response=litellm_model_response,
model=model,
)
kwargs["response_cost"] = response_cost
kwargs["model"] = model
# Make standard logging object for Vertex AI
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
status="success",
)
# pretty print standard logging object
verbose_proxy_logger.debug(
"standard_logging_object= %s", json.dumps(standard_logging_object, indent=4)
)
kwargs["standard_logging_object"] = standard_logging_object
await logging_obj.async_success_handler(
result=litellm_model_response,
start_time=start_time,
end_time=end_time,
cache_hit=cache_hit,
**kwargs,
)
pass
async def vertex_passthrough_handler(
self,
httpx_response: httpx.Response,