mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
Remove unused function
This commit is contained in:
parent
6dac7d43a1
commit
cc36d906a9
1 changed files with 1 additions and 107 deletions
|
@ -310,7 +310,7 @@ def _process_gemini_image(image_url: str) -> PartType:
|
|||
|
||||
mime_type = get_file_mime_type_for_file_type(file_type)
|
||||
file_data = FileDataType(mime_type=mime_type, file_uri=image_url)
|
||||
|
||||
|
||||
return PartType(file_data=file_data)
|
||||
|
||||
# Direct links
|
||||
|
@ -427,112 +427,6 @@ def _gemini_convert_messages_with_history(messages: list) -> List[ContentType]:
|
|||
return contents
|
||||
|
||||
|
||||
def _gemini_vision_convert_messages(messages: list):
|
||||
"""
|
||||
Converts given messages for GPT-4 Vision to Gemini format.
|
||||
|
||||
Args:
|
||||
messages (list): The messages to convert. Each message can be a dictionary with a "content" key. The content can be a string or a list of elements. If it is a string, it will be concatenated to the prompt. If it is a list, each element will be processed based on its type:
|
||||
- If the element is a dictionary with a "type" key equal to "text", its "text" value will be concatenated to the prompt.
|
||||
- If the element is a dictionary with a "type" key equal to "image_url", its "image_url" value will be added to the list of images.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing the prompt (a string) and the processed images (a list of objects representing the images).
|
||||
|
||||
Raises:
|
||||
VertexAIError: If the import of the 'vertexai' module fails, indicating that 'google-cloud-aiplatform' needs to be installed.
|
||||
Exception: If any other exception occurs during the execution of the function.
|
||||
|
||||
Note:
|
||||
This function is based on the code from the 'gemini/getting-started/intro_gemini_python.ipynb' notebook in the 'generative-ai' repository on GitHub.
|
||||
The supported MIME types for images include 'image/png' and 'image/jpeg'.
|
||||
|
||||
Examples:
|
||||
>>> messages = [
|
||||
... {"content": "Hello, world!"},
|
||||
... {"content": [{"type": "text", "text": "This is a text message."}, {"type": "image_url", "image_url": "example.com/image.png"}]},
|
||||
... ]
|
||||
>>> _gemini_vision_convert_messages(messages)
|
||||
('Hello, world!This is a text message.', [<Part object>, <Part object>])
|
||||
"""
|
||||
try:
|
||||
import vertexai
|
||||
except:
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="vertexai import failed please run `pip install google-cloud-aiplatform`",
|
||||
)
|
||||
try:
|
||||
from vertexai.preview.language_models import (
|
||||
ChatModel,
|
||||
CodeChatModel,
|
||||
InputOutputTextPair,
|
||||
)
|
||||
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
||||
from vertexai.preview.generative_models import (
|
||||
GenerativeModel,
|
||||
Part,
|
||||
GenerationConfig,
|
||||
Image,
|
||||
)
|
||||
|
||||
# given messages for gpt-4 vision, convert them for gemini
|
||||
# https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb
|
||||
prompt = ""
|
||||
images = []
|
||||
for message in messages:
|
||||
if isinstance(message["content"], str):
|
||||
prompt += message["content"]
|
||||
elif isinstance(message["content"], list):
|
||||
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
|
||||
for element in message["content"]:
|
||||
if isinstance(element, dict):
|
||||
if element["type"] == "text":
|
||||
prompt += element["text"]
|
||||
elif element["type"] == "image_url":
|
||||
image_url = element["image_url"]["url"]
|
||||
images.append(image_url)
|
||||
# processing images passed to gemini
|
||||
processed_images = []
|
||||
for img in images:
|
||||
if "gs://" in img:
|
||||
# Case 1: Images with Cloud Storage URIs
|
||||
# The supported MIME types for images include image/png and image/jpeg.
|
||||
part_mime = "image/png" if "png" in img else "image/jpeg"
|
||||
google_clooud_part = Part.from_uri(img, mime_type=part_mime)
|
||||
processed_images.append(google_clooud_part)
|
||||
elif "https:/" in img:
|
||||
# Case 2: Images with direct links
|
||||
image = _load_image_from_url(img)
|
||||
processed_images.append(image)
|
||||
elif ".mp4" in img and "gs://" in img:
|
||||
# Case 3: Videos with Cloud Storage URIs
|
||||
part_mime = "video/mp4"
|
||||
google_clooud_part = Part.from_uri(img, mime_type=part_mime)
|
||||
processed_images.append(google_clooud_part)
|
||||
elif "base64" in img:
|
||||
# Case 4: Images with base64 encoding
|
||||
import base64, re
|
||||
|
||||
# base 64 is passed as data:image/jpeg;base64,<base-64-encoded-image>
|
||||
image_metadata, img_without_base_64 = img.split(",")
|
||||
|
||||
# read mime_type from img_without_base_64=data:image/jpeg;base64
|
||||
# Extract MIME type using regular expression
|
||||
mime_type_match = re.match(r"data:(.*?);base64", image_metadata)
|
||||
|
||||
if mime_type_match:
|
||||
mime_type = mime_type_match.group(1)
|
||||
else:
|
||||
mime_type = "image/jpeg"
|
||||
decoded_img = base64.b64decode(img_without_base_64)
|
||||
processed_image = Part.from_data(data=decoded_img, mime_type=mime_type)
|
||||
processed_images.append(processed_image)
|
||||
return prompt, processed_images
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
def _get_client_cache_key(model: str, vertex_project: str, vertex_location: str):
|
||||
_cache_key = f"{model}-{vertex_project}-{vertex_location}"
|
||||
return _cache_key
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue